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This tutorial provides a nonlinear dynamics perspective to Wolfram’s monumental work on A
New Kind of Science. By mapping a Boolean local Rule, or truth table, onto the point attractors
of a specially tailored nonlinear dynamical system, we show how some of Wolfram’s empirical
observations can be justified on firm ground. The advantage of this new approach for studying
Cellular Automata phenomena is that it is based on concepts from nonlinear dynamics and
attractors where many fuzzy concepts introduced by Wolfram via brute force observations can
be defined and justified via mathematical analysis. The main result of Part I is the introduction
of a fundamental concept called linear separability and a complexity indexr K for each local
Rule which characterizes the intrinsic geometrical structure of an induced “Boolean cube” in
three-dimensional Euclidean space. In particular, Wolfram’s seductive idea of a “threshold of
complexity” is identified with the class of local Rules having a complexity index equal to 2.
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1. Introduction

The objective of this tutorial is to provide a non-
linear dynamics perspective to Stephen’s Wolfram’s
beautifully articulated masterpiece on A New Kind
of Science [Wolfram, 2002], which is based almost
entirely on empirical observations from computer
simulations. In particular, we will develop a
geometrical approach for defining an integer char-
acterization of all Boolean functions arising from
one-dimensional Cellular Automata with nearest
neighbors (our theory, however, is valid for any di-
mension and with any neighborhood size). This in-
teger, called the complezity index k, is an intrinsic
measure of the structural complezity of every local
Rule. We will show that the complexity index pro-
vides a rigorous definition for Wolfram’s insightful
but fuzzy concept on “Threshold of complexity”, a
seductive idea without a definition!

Our object of study in this paper is a ring of
coupled cells C;, 1 = 0,1,2,...,N, as shown in
Fig. 1(a). For maximum generality, each cell C;
is assumed to be a dynamical system, shown in
Fig. 1(b), with an intrinsic state x;, an output y;,
and three inputs u;—1, u;, and u;41, where u;_1 de-
notes the input coming from the left neighboring
cell C;_1, u; denotes the “self” input to cell C;, and
u;+1 denotes the input coming from the right neigh-
boring cell C;4;. Each cell evolves in accordance
with its prescribed dynamics, and has its own time
scale. When coupled together, the resulting system
would evolve in a way that is consistent with its
own “rule” as well as the “rule of interaction” im-
posed by the “coupling laws”. For the purpose of
this paper, we assume each nput is a constant inte-
ger u; € {—1,1}, and the output y;(t) converges to
a constant y; € {—1,1} from a zero initial condition
z;(0) = 0 (a standing assumption in this paper). In

. 2738
. 2740
. 2741
. 2749
. 2750
. 2756
. 2764
. 2765

the context of Cellular Automata, we ignore the fact
that it takes a finite amount of time for any dynam-
ical system to converge to an attractor and idealize
the situation by assuming each attractor is reached
instantaneously. Under this assumption and in view
of the binary nature of both the input and the out-
put, our dynamical system is equivalent to a non-
linear map which can be uniquely described by a
truth table of three input variables (u;_1,u;, Uit+1),
called a local Rule in [Chua, 1998] and [Wolfram,
2002]. Our choice of {—1,1}, and not the conven-
tional symbols {0,1} as our binary signals, is not
merely cosmetic but absolutely crucial in this paper
because we will map our truth table onto a dynam-
ical system where the state z; and output y; evolve
in real time via a carefully designed scalar ordinary
differential equation which is carefully designed so
that after the solution z;(t) (with zero initial state
z;(0) = 0) reaches a steady state, the output y;(t)
(which is defined via an output equation y; = y(z;))
tends to either 1 or —1. In other words, we will use
the attractors of the dynamical system to encode a
binary truth table.

Aside from the cell’s intrinsic time scale, which
is of no concern in Cellular Automata, we will
introduce an external clocking mechanism which
resets the input u; of each cell C; at the end of
each clock cycle by feeding back the steady state
(i.e. attractor) output y; € {—1,1} as an updated
input u; € {—1,1} for the next iteration. The re-
sulting system is called a one-Dimensional Cellular
Automata with a periodic boundary condition. No-
tice that although cellular automata is concerned
only with the ring’s evolutions over discrete times,
any system or computer used to simulate cellular
automata is always a continuous time system with
a very small but non-zero time scale. Even the
personal computer which Stephen Wolfram uses to
create his spectacular collection of evolved patterns
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Fig. 1.

(a) A one-dimensional Cellular Automata (CA) made of (N + 1) identical cells with a periodic boundary condition.

Each cell “” is coupled only to its left neighbor cell (i — 1) and right neighbor cell (i+1). (b) Each cell “” has a state variable
zi(t), an output variable y;(t) and three constant binary inputs u;—1, u;, and u;y1.

are made of devices called transistors, and each
cellular automata iteration involves the physical
evolution of several million transistors, each having
its own intrinsic dynamics. These transistors evolve
in accordance with a very large system of nonlin-
ear differential equations governing the entire inter-
nal computer circuit and return the desired output
after converging to their respective attractors in a
non-zero amount of time, which translates into the
computer’s processing speed.

What we wish to emphasize here is that even
in discrete systems like cellular automata, there are
two different time scales involved. The first ap-
plies to the local Rule while the second applies to
the global patterns of evolution. To understand the
complex dynamics of global patterns, it is necessary
to examine both mechanisms.

This paper (Part I) is concerned only with the
mathematical characterization of local Rules. By
unfolding a “lifeless” truth table into an appropri-
ate nonlinear dynamical system, we can exploit the
theory of nonlinear differential equations [Shilnikov
et al., 1998; Shilnikov et al., 2001] to arrive at a
phenomena based on sound mathematical theory,
and not on empirical observations.

2. Cellular Automata is a Special
Case of CNN

CNN is an acronym for either Cellular Neural Net-
work when used in the context of brain science,
or Cellular Nonlinear Networks when used in the
context of coupled dynamical systems [Chua et al.,
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1995; Chua, 1998; Chua & Roska, 2002]. A CNN is
defined by two mathematical constructs:

1. A spatially discrete collection of nonlinear dy-
namical systems called cells,! where information
can be encrypted into each cell via three indepen-
dent variables called input, threshold and initial
state.

2. A coupling law relating one or more relevant vari-
ables, such as state, output, etc., of each cell Cj;
to all neighbor cells C}; located within a pre-
scribed sphere of influence? s;;(r) of radius r,
centered at Cj;.

In the special case where the CNN consists of
a homogeneous array, and where its cells have no
inputs, no thresholds, and no outputs, and where
the sphere of influence extends only to the nearest
neighbors, the CNN reduces to the familiar concept
of a nonlinear lattice.

From a technological perspective, CNN rep-
resents currently the only practical method for
fabricating a cell array of meaningful size for image
processing applications. Because of its local connec-
tivity (r = 1), it is currently possible to cram more
than 4 million CMOS transistors into a 128 x 128
CNN chip on 1 square centimeter area of silicon
and dissipating less than 4 watts of power [Lifian
et al., 2002].> This chip, called a CNN Universal
Chip, as well as several other competing chips, can
be programmed via a user-friendly language so that
instead of implementing only one evolution law per
chip, an entire sequence of evolution laws can be
programmed and executed all on the same chip just
like a personal computer. In this case, however,
we have an enormously more powerful and orders
of magnitude faster computer because every CNN
cell in the array is processing information simulta-
neously, a truly parallel computer on a chip! For
many mission critical applications, such as tracking
a missile in flight, an earlier 64 x64 CNN chip has al-
ready outperformed a conventional supercomputer
in terms of processing power.

We will prove in Sec. 4 that for each one-
dimensional cellular automata with nearest neigh-

bors and any prescribed local Boolean function of
three binary variables (u;_1, u;, u;+1), we can design
a CNN cell defined by a scalar nonlinear differential
equation whose corresponding output tends to an
attractor which codes the desired local rule. More-
over, all of these cells have the same “structural”
form in the sense that a single scalar nonlinear dif-
ferential equation can be tuned to yield a correct
binary output consistent with any prescribed local
rule by simply choosing eight real numbers. Such
a task can be easily implemented on a CNN either
by straightforward programming, or by using a de-
signer’s CNN cell and executed in a few nanosec-
onds with current technology. We will illustrate
both avenues in Sec. 4. Furthermore, it will fol-
low from our analysis in Sec. 4 that our theory is
independent of the size of the sphere of influence,
as well as, on the spatial dimension of the CNN.
In other words, we have the following fundamental
result?:

FEvery binary cellular automata of
any spatial dimension is a special case of a CNN
with the same neighborhood size.

Theorem 1.

3. Every Local Rule is a Cube with
Eight Colored Vertices

A Boolean function is usually described in computer
science or informatics by a truth table where each
binary variable is represented symbolically by ei-
ther a “0” or a “1”. In this paper, it is absolutely
essential that we use “—1” and “1” instead of “0”
and “1” because these variables, except in a few
strictly Boolean settings, must be interpreted as
real numbers in all subsequent mathematical anal-
ysis and calculations, such as solving differential
equations, which are all based on the real number
system. Hence, the truth table for a Boolean func-
tion of three binary variables wu;—1, u;, and w;4+;
will be depicted as in the upper part of Fig. 2.
The only exception to this assumption is in the
output y; of cell “C;” where we may revert back
to “0” and “1” whenever it does not enter into

!The cells need not be identical and are usually arranged uniformly on a two- or three-dimensional orientable manifold in
space, e.g. rectangular, hexagonal, toroidal, spherical arrays, etc. The variables may assume continuous values or a finite
number of discrete symbols. The dynamical system may be specified by an evolution law or algorithm, such as a differential
equation, a difference equation, an iterative map, a semigroup, etc.

2For example, r = 1 for all nearest neighbors and r = 2 for all nearest and next nearest neighbors.

3In contrast, because of its full connectivity where each cell is coupled to every other cell, the famous Hopfield network has

remained only as a useful conceptual tool.

4We conjecture that Theorem 1 holds not only for binary cellular automata, but also for any finite number of states.
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Each Boolean function of three binary variables can be uniquely represented by a Boolean cube with colored vertices.

The center of the cube is located at the origin of the three-dimensional (u;—1, ui, uit1)-space. The coordinates of each vertex
® correspond to row k of the truth table. The number 2¥ shown next to vertex () is its decimal equivalent.

any arithmetic or algebraic calculations.  For
example, it is more convenient to decode the output

Yi = (77,76, 755 74,735 72,71,70) in decimal system
by recasting it into its equivalent binary form y; =

(ﬂ7a /367 ﬂ57 ﬂ4a /337 ﬂ?a /313/30) where /6] is either a “0”

or “1” so that the corresponding decimal number
is simply the integer N = (3; @ 27 4 35 26 + (35 @
2+ 02"+ G3025 + 3, 02% + 3 @21 4 3y 0 20,
as shown in the upper part of Fig. 2. Since there
are 22° = 256 distinct combinations of this eight-bit
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word, there are exactly 256 distinct Boolean func-
tions, each one identified uniquely by an integer N,
where N = 0,1,2,...,255. It is important to ob-
serve that the output y; specifies either a Boolean
rule (when coded in “—1” and “1”) or its identifi-
cation number (when coded in “0” or “1”). This
“dual” role assumed by y; follows the convention
adopted in [Chua, 1998; Wolfram, 2002].

Since the three binary variables u,_1, u;, and
uij+1 in a one-dimensional Cellular Automata are
coded in terms of real numbers “—1” and “1”, we
can identify each input (u;—1,u;, u;y1) as a verter
of a cube (of length 2 on each side) centered at
the origin. It is also extremely convenient to re-
fer to each of these eight vertices by an integer
0,1,2,...,7, by reverting back to its correspond-
ing three-bit binary word. For example, the bi-
nary word associated with the vertex located at
(=1, 1, 1) is 011, which decodes into the integer
3. In other words, we can identify uniquely each
vertex of the Boolean cube by an integer n, where
n ranges from 0 to 7. We will henceforth adopt this
identification scheme, as depicted in the lower part
of Fig. 2, where each vertex number is enclosed by
a circle.

Observe next that if we paint each vertex @
red when y; is “1”, or blue, when y; is “—1” in row
“n” of the truth table, then the resulting “Boolean
cube” contains exactly the same information as the
truth table. This simple equivalent description of
a Boolean function of three binary variables repre-
sents not only a very compact description, it also
turns out to be crucially important in Sec. 5 where
the cube’s spatial geometry will be fully exploited to
arrive at a unique characterization of the structural
complezity of a Boolean function.

Each of the 256 Boolean cubes is listed in
Table 1 along with its identification number, hence-
forth called its rule number.> Note that each rule
number is printed either in red, or in blue, which
codes for a Linearly Separable rule, and a Linearly
Non-Separable rule, respectively. The significance

of these two classes of Boolean rules will be revealed
in Sec. 5.

Given any Boolean cube from Table 1, we can
easily identify its rule number by simply adding
the decimal number 2* for each integer k associ-
ated with a red vertex. For example, the deci-
mal numbers associated with the five red vertices
D, @, @, ® and ® (for rule 110) is equal to
21 + 22 + 23 4 25 4 26 = 110, which can be triv-
ially read off the decimal numbers shown next to
each vertex in Fig. 2, viz. 2+4+4+8+ 32464 = 110,
as expected.

4. Every Local Rule is a Code for
Attractors of a Dynamical System

Our main result of this paper is to provide a con-
structive and explicit proof that every Boolean func-
tion, or local rule, N from Table 1 can be mapped
into a nonlinear dynamical system whose attrac-
tors encode precisely the associated truth table IV,
N =0,1,2,...,255. In particular, the dynamical
system can be chosen to be a scalar ordinary differ-
ential equation of the form.%

&; = g(x;) + w(wi—1, u;, Uit1)

1

where

A

9(xi) = —z + |z + 1| = |2 — 1] ()

henceforth called the driving-point function,” and
w(ui—1,ui,u;iy1) is a scalar nonlinear function of
three real variables u;_1, u;, and u;4; for each lo-
cal rule N, N = 0,1,2,...,255. In particular,
w(ui—1,ui,u;iy1) can be chosen [Dogaru & Chua,
1999], to be a composite function w(co) of a single

STable 1 is a reordered version of Fig. 57 from [Chua, 1998], where the binary rule number y; of the truth table in Fig. 2 was

decoded with ~y7 as the least significant digit.

5There are many possible choices of nonlinear “basis function” for g(z;) and w(u;—1,u:,u;+1), such as polynomials. We have
chosen the absolute value function f(z) = |z| as our nonlinear “basis function” in this paper not only because the resulting
equation can be expressed in an optimally compact form which fits the limited space provided in Table 2, but also because
it allows us to derive the solution of Eq. (1) in an explicit form. Moreover, it is much easier to build chip for implementing
Eq. (1) with absolute-value functions via current microelectronics technology.

"Equation (1) is solved explicitly in [Chua, 1969] for any piecewise-linear driving-point function. The terminology “driving

point”

comes from nonlinear circuit theory and need not concern readers of this paper. Many other driving-point functions

which produce the same local rule N can be chosen; for example, we can choose g(x;) = x; — 7, which looks simpler
mathematically, but much more difficult to implement on a chip.
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Table 1. List of 256 Boolean Function “Cubes” defining all Boolean functions of three binary variables.
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Table 1. (Continued)
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Table 1.
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Table 1.

(Continued)

iy
iy
&
y
0

182

193

184

185

186

@&
My

187

198

0g
iy
¥y
iy

200

201

202

203

0
e

204

05

[

i

P
=]
=4

iy
iy
iy
ey

208

209

210

211

0
&

212

3% ]
-
L]

0g
iy
&
iy

217

218

hd

19

Vil

)
&

iy
iy
Ny
iy

224

P

25

226

227

gy e
iy

230

231

0
iy
ey
ey

232

233

234

b
[
L

NyREygYy

236

ity

[

37

Ny
iy

238

238

¥y
&
ey

Nty
ey

iy

efiey

241 242 243 244 245 246 24T
249 250 2561 252 253 254 255

™
=&
=
g

Linearly separable : Red(N)

N = binary equivalent of (p, p, ¥, ¥, Fs 72 %, 7a)

®— yi(“r—1!“i3“1+|) =1

Linearly non-separable : Blue(N) @ —» v, (x4, 1, HM) —==1




A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part I 2665

variable

o 2 biu;_1 + bou; + bgui_H 2 bTu (3)

henceforth called a projection in this paper, where

b1 Uj—1
b= |b and u=| v (4)
b3 Uit 1

are called an orientation vector and input vector,
respectively, and where

wo) 2 {nt|axln+ol} ©

Depending on the context where it is most meaning-
ful, the composite function w(o) is called a discrim-
inant function, or an offset level [Chua, 1998] in this
paper. Observe that even though the discriminant
w(o) is a function of three input variables w;_1, u;,
and w;41 in view of Eq. (3), it is a scalar function of
only one variable o. This rather special mathemat-
ical structure of w(o) is the single most important
property which makes it such a delightfully simple
task to map each local rule onto a nonlinear dynam-
ical system and painlessly perceive its trajectories
converging into various attractors which can then
be coded in a truth table in a one-to-one manner!
The same discriminant function w(o) is used
to define the appropriate differential equation (1)
for generating the truth table of all 256 Boolean
cubes listed in Table 1. Each local rule corresponds
to a particular set of six real numbers {z2, 21, 20;
b1,b2,bs3}, and two integers +1. All together only
eight parameters are needed to uniquely specify the
differential equation (1) associated with each local
rule N, N = 0,1,2,...,255. Since eight bits are
needed to specify each local rule, or the colors of
eight vertices are needed to specify each Boolean
cube, the discriminant function is optimal in the
information-theoretic sense that it calls for only the
minimum number of information needed to uniquely
specify a Boolean function of three binary variables.
We will prove below that once the parame-
ters defining a particular local rule N from Table 1
are specified, then for any one of the eight inputs
(wi—1,u;, uiy1) listed in the truth table in Fig. 2, the
solution x;(t) of the scalar differential equation (1)
will either increase monotonically from the initial
state x; = 0 toward a positive equilibrium value

Ti(n) > 1, henceforth denoted by attractor Q+(n),
or decrease monotonically towards a negative equi-
librium state T;(n) < —1, henceforth denoted by
attractor Q—_(n), when the input (u;—1,u;, uj+1) in
Eq. (1) is chosen from the coordinates of vertex @
of the associated Boolean cube in Fig. 2; or equiv-
alently, from row “n” of the truth table in Fig. 2,
forn =0,1,2,...,7. Observe that if we paint ver-
tex @ red whenever its equilibrium value Z;(n) > 1,
and blue whenever Z;(n) < —1, then the color of all
eight vertices for the associated Boolean cube will
be uniquely specified by the equilibrium solutions
of the eight associated differential equations. If we
simulate Eq. (1) with a chip, the equilibrium state
will be attained in only a few nanoseconds (10~ sec-
onds), which is practically instantaneous for many
real-world applications.

In short, once the parameters associated with a
particular local rule from Table 1 are specified, the
corresponding truth table or Boolean cube, will be
uniquely generated by the scalar differential equa-
tion (1) alone. Note, however, that the equilibrium
value of T;(n) is not equal in general to £1 and
is thereby not a binary number although we have
managed to assign a color correctly to each vertex,
under the implicit “understanding” that vertex ()
will be coded red if T;(n) > 1, or blue if Z;(n) < —1.

To avoid having to make such an ad hoc as-
sumption, we will formally identify each local rule
in Table 1 by a dynamical system defined as follows:

State Equation

T = (@i wimt, U, it1)

(6)

Output Equation
1
vi = (@) = 5|z + 1] = |z = 1))

Observe from Eq. (7) that y; = +1 when z; > 1,
and y; = —1 when z; < —1, thereby making it un-
necessary to introduce the harmless though ad hoc
assumption.

The dynamical systems for generating all 256
local rules in Table 1 are compiled in Table 2 for fu-
ture reference. In each case, the scalar differential
equation (1) is obtained by substituting the expres-
sion y(z;) from the output equation in place of the
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Table 2. Dynamical system for generating all 256 local rules listed in Table 1. The differential equation is obtained by
substituting the output equation for y; in the state equation. The initial condition is z;(0) = 0.

State Equation K=1 State Equation x=1
X ==x. 42y, X;=—X;,+2Y;
+(-1) +(—u;_—u; —u; = 2)
Output Equation Output Equation

al
y=ve) 2 15+ -lx-11) | =re) S -1])

Dnnnooon(ooooooon

Rule 0 Rule 1
Siate Equation K=] State Equation K=
o= =X+ 2. P X
X; X;+2) X;=—X;+2Y;
U U Uy, —2) + (U —u;—1)
Output Equation Output Equation

1 1
yi=y05) == g+ =lx-1) | yi=ye) o (n+] =% -1])

NOOnnnon|ooooooon

Rule 2 Rule 3
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Table 2. (Continued)

K=l ) K=
State Equation State Equation
X;=-x;+2y; X;=—X;+2y;
Uyt —u - 2) (- Uiy 1)
Output Equation Output Equation

1 1
yi=yo) 2 (et =1x=10) | =ye) 25 (lx+1l=1x%-1])

ETataisielaale]

Rule 4 Rule 5
K=7 . x=]
State Equation State Equation
Output Equation Output Equation

| |
Jﬁz}ﬁﬁ)éa(1%44¢“Lﬁ_lD ;%=JK%)25(I%*4I“FE-1D

Rule 6 Rule 7
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Table 2. (Continued)

: K= g K=2
Siate Fijailion Suite Equation
i‘-f — = II|.I + :"rLLJ‘: .i.J' — 'Trl i 2_‘""
b=l 08 ~2) # [ 1= (Quy_y +uy—uy, + 2)|]
Thuigd. Fapuniinn irarpui Equation
PR sl )
¥Yi=ylx) ;{|.‘i:; H - x Il) _‘r"';-'_H-Tj]_:{l-"a“"”_l-rr_l'

Rule 8 Rule 9
. : "= . - K = |
Stnte Eguation State Equation
o e o ] e IR
.'l.j = '1'F+'—1'1' .1.‘- 'T‘.-:' .;_1; .
4 :—::I_E ity — 1) e all, (M vu, 1)

(hitpat Equatiin Chitpil Equathon

4 | al
y=ye) A= (xal-lg-10) | w=xe) s (x =% 1))

[ETatetatatatate)

Rule 10 Iule 11
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Table 2. (Continued)

Stute Equation K= Stmte Fiquntiog K=
X, =—-x+2y; Xy =X+ 2y,
+ (—u;_y +u;—1) (=20, v - —1)
Cutpul Fquation Uutpul Fajuatian
.r;-thIJ%{ |3 +1] =[5 ~1]) .E-'J’f.l]-ié%{I—E +]-|x,-1])

ETetai=iaiatars]

Rule 12 Rule 13
i k=11 _ K=
Himie Figailion Simie Eguatiog
o= . . . T
X, =-x 42, X; X:+ 2V,
Chrtpint Fguntion Chutput Equation

4 ; |
_}y=}-{x!}'=%(|.:;+l]—1.1]—lj) _’r’,—-‘,‘r’{a"-'.-}g;{|-'f.”| |x~1]) |
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Table 2. (Continued)
k=1 K=
State Equatvn Himie Fapuntion
S = ") i " X o T
,r‘. = .‘uj i “J,. b J.J .'cr | -.1;
1y =y =ty = 2) +(—Hy— Uy - 1)
Chuipmi Eopuaiim Drutput Equation

"
Vi=yx é;{la-+ll~le-l|)

|
Y=y 2 (|5 41| x-1])

|
¥, =.vrx;}'f‘i(I-ﬂq+ll—|-r,—ll)

[ HE NN NN
Rule 16
K=12 T K=l
Simie Eapantion Sinte Equation
a1 s Y 4n e A '
M = XprE Ny Xp==x;+2¥; |
{rutpai Equation Orprprd Faguewtlom

al
¥ =_p{.:,.}é5{ |5 +1|=] % =1])

[eTetaratatarste

| |
| Rule 18

Rule 19
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Table 2. (Continued)

x=2 K=]
Squre Fapzniinn Kl Egquatinn
1‘.} = _J:I' I :!'%l . ..i':“ = _Il,: oL E_UF
1= (=20 = 2u; + 1y + 1) ] +(—ty_ — ;= 2u;,,=1)
Cratpot Equation Dhigmi Equaiim

1
=y 22 el-lx-1) | 3=pe) s+ =lx=11)

Rule 20 Rule 21
K=2 K=
Himie Fayaatian Seute Fepuadien
Xy ==X+ 2y .f‘ = —X; 4 2y;
b= | gy F 1+ +1) ] (U — Uy — Ui,y
{'Iurrml Flllllillﬂ Ui I-]|Il.l.l-lill
al wval
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Table 2.

(Continued)

: k=2
Silaie Eguation

¥ — g BT
.T;— 11‘:+.—,|r'
i I | =
+ | .-15{11‘[ ¥ HHI:I“

(gt Eqpuuiion

Al
¥ =35)==(1%+1] -] % -1])

[Atatelatelstete]

State Eq‘ul.ﬂnn

1

Oatput Equation
|
Y= J’{-"t}ét;( | % +1]=]x-1])

k== + 2

=¥

+ | 3- |{Eu,_| —; + 4ur+1 - 1)1

Chuipul Kiuaiion

|
yr=30) 22 ([ 1]~ -1])

iaiaiateislale]

Ulmipmid Fajuatiom

|
Yi "'J’{-"';}é;“-r:"‘”‘“‘a ‘ll)

Rule 24 Rule 25
k=2 &=
oy Eq_ou‘.ll.lll State Famatioan
1'. = M g A = Tk
& X b2V Xp ==X+

d
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[ETetatatatatare]
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Table 2. (Continued)

K=2 i =3
Himie Figuniing Hiwdw Expuainn
nL=—x+2y ¥, ==X, + 2y
| . i i i
1 [-“ | (Zae;_ +"h'"{ =M= 1) ” ! {: 13 '2“.-} +u _'IHI-rI =31 |}
Crnirpian. Fgunrlan Dutput Eguation

¥, =_1={x,}é%([.q SIEERST) ¥ =J’f-"-';}é%(!-‘]“"”']-‘&‘”)

Rule 28 Rule 29
K= : n= |
Simie Equatian Sinie Eguaiinm
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(hitpatl Equation Coptpni Equatiam

W 1
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Table 2. (Continued)

k=] =1
St Equarion Kinle Fyuaiim
- = - "} F Y —_— A
X, TR X, T’+“'I-§. i
+[1=( LT TR PR 11

Y i
+ (u;_, b+ 2y 23
thaipul Fguainm

, |
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Rule 32 Kule 33
K=] : K=1
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e . } o= = Ty
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Dutpul Equatian
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Table 2. (Continued)

K=2 k=21
Sente Faguaiiom = Riale Equation
X ==X+2Y Bp=—xpd 4y
P24 |ty =W, 0 | 13- (20 — by — At < 1) ]

Oratput Fquation

Ohitpant  Equation 1
yi=y0) 2= (| +1] =[x -1])

!
yi=y) 2= (1% 41]=|%-1])

E|E =
Rule 37

mislm
Rule 36

Sad

Slale Equalien Sinle Faguaturm

. BT T W LT
X = .'|.II*|._1.||

ok b §
fo=-x 420 ! ]
+ 12 |l LIM U '-hil | —EHI +u|,+r—1:||||]

+[3-| (—u;_; + l-;‘ + 4"1’-I-l 1)1

Dratput Egaation |
yi=35) 22 (%41 =% -11)

BaF

Dlmipad Fyumiion

al
=y E=(x 411 -x-1])

2

Rule 3R ‘ Rule 39
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Table 2. (Continued)
5 =
State Equation L State Equation et
+[1- | (=2u;_ —2u; +u; . —1) ] + 1= | (g —uy +up 1) ]

Output Equation

I
yi=y)E(x+1l=1x-1])

Output Equation

1
Yi :y(xz')%‘i( [l =1 |)

Rule 41

State Equation
X; + 2y!.

X

Output Equation

1
yi=y03) (1% +1] - % -1])

K=1
State Equation

X;

X, +2y; |
(=g — U Uy)

Output Fquation

1
yi=y0) (1% +1] = %-1)

[eTeterarararare

Rule 42

Rule 43
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Table 2. (Continued)
=2 . K=2
htate Equation Srate Euation
T i £ o oy
X; X+ 4 ¥ , X X, 4 __if_}
3= | (—An, — 20 g, — 1) ] +[2-|( dny_y =ity gy 1311

Chudpmi Fyuaimm

|
Vi rl{tf}é:( I.TI'!'I |_|I}"! |)

— . I

Rule 44

Umtpit Equation
|
y=y&)2=(1x+1]-|%-1])

[Eieisistetarate

Rinre Kipuntion

X

e 2y,

§ :3 “F’u A :I.hJ —:]"'"f+[ +4)] ||}

Crrpt Fgot o

i
yi=y) = (] 5+ =l -1 )

Rule 45
K=l
Site Fauatian
= e BT
.1} - .rf+n-l_l"'-
~

b(=3u, U+, +2)

-_

Ui Kaemblom

|
v, -_-:t.r,-)égﬂ-n+1I—II;—1|)

Rule 47
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Table 2. (Continued)
: K= | k=1
Biuie Fipuniiem Stute Heuainm
T - L S "
X, X;+ 2V, Xy ==X +2);
+(w;  —u;—1) -, =20, —u, o =1)
Critput Expuation Uhatput Eguainm

al
¥, -}‘[rﬁ};:( | X, +1]=| x, _II)

|
V= 35) 2= (%41 =%, -1])

x,-1])

al
yi =02~ (|5 +1]-

nje|n|mm
Rule 48 Rule 49
K= . K=]
Simie Fapuaiion Hinir Eguuinm
o e i - - Tl r, ! g
X; xX;+2) i, X+ 2y,
H(u,_ —2u,+u, 1) +(=u,)
Dutput Equstion (rutpal Eguation

|
,r,-=_v¢.r,:~i5{1:r,+1t—|.a-—l1)

[Elsleistelstele]

Rule §l)

Rule 51
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Table 2. (Continued)
- |
- K.=.1 =1
Slate Eyuution Shadr Eyguatio K="
- £ ¥ 1 ! . 4"
'IL.I I' T -.—.lJI rﬂ = _-1] T *-J.I.I.I

13— | (-2, =S =t =111

X, EI)

Chuipnt Equation

¥ =30) (| +1] -

1 {?.—1|—_‘~.~ | (4, , +u, 3rf”r —E]n!i”

Qitpul Exuaiion

¥=30) 22 (1 1) =5 1])

K=]

_ NN NN BN BN |
Rule 52
N
State Equatien K =4
o=y T
X l-: + Ly -

{hitpl Equwiian

al
V= 95) 2= (% 1] =] x,~1])

ETatsiatatatats]

o — )
+(=u; iy +2)

Datpl  Fepeatinm

Ny
3 f :_1"[%);‘;“-’:;'*'”" III_I1)

Rule 5

“

Rule 54 l
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Table 2. (Continued)

K=2 k=1
Nimie Eaguation State Fguatien
= : o BT v R e M (81
Xp=—X; +2¥, X R

I

+[1—.{.:I1‘|i_| i "-h-l!‘- LR ””

Chrpet Eruaiion

41
¥ =Wx)= i{ |x+1] =] x -l|}

Drtpit Equation [
yi=y) == (% #11=[x-1])

Rule 56
K=J
State Eguatan
e amt e
x; X+ L)
| {;r [.1 "'L_Hl-l -+?!nl —4.'4”1 i .ﬂ:[ﬂ
Uhutpul Eapualion

|
y=y6) == (1% H =% -1)

Eiefstetataisie]

| Rule 58

Rule 57
K=1
State Equation
.= = i T
.-':I - -'u-:. L] ‘-}i- 1
+{—u:._] 3u:+u; 2)
Datpeit Equanion

il
¥i=px) = :(. | % +1]=|x -1 |)
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Table 2. (Continued)

K=2 K=
State Equation Srate Fapmutian
" = . ’:F Fy -.l = 4 i g
i T _ ==Xy Ly
+|]—|ﬂu!-_| !Hl'j'] + v"_“._E"j_|“E”[+”j+|"‘J'”l
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1
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1
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Rule 6 Rule 61
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State Equation _ St Fapuatian k=
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£ -
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gt Fapuaiinn

= J‘L‘-'f]gl_j( | X+ |- x; _”)

Rule 64

Table 2. (Continued)
K =1 K=.2
State Equation State Equarion
— - -F:' .- — = .l_f:l F
;= —X ¥y 4 Xp ==X H;l'le‘ . l
+ (B Uy =y 2) "'ll_l["”r'—l. 2uey -+ g+ 1) ]

Charpul Equation

i N
yi=y) 2= (1% 1] -|x~1])

[ETel=lsiaratate]

Rule 03
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I
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al
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Rule 66
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Table 2. (Continued)
; =1
Stale Equnisim Siafe Fyuution
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Al
Yi ".‘P‘{I,'}AT;( ES Hl‘lvﬂ ‘ll)
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Table 2. (Continued)
k=1 K=
Staiw Eyguniion Sinte Fapuading
= - : . .
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¥ =¥E)E (1% 41 =[5 1)
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Table 2. (Continued)
K=l K=
State Equation Stmte Equatlon
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Table 2. (Continued)
Ermie Equprion K= Humir Figuuiian K=
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Table 2. (Continued)
K= . K=
Einve Eguaiion Rate Frgoatinn
E e Iy e e
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Table 2. (Continued)

K=2 k=2
Seate Equation Femie Foausting
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2.

(Continued)
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output variable y; in the state equation. The initial conditions for all 256 dynamical systems listed in
Table 2 are the same, namely, x;(0) = 0.

Observe that all dynamical systems listed in Table 2 have identical driving-point functions g(x;), defined
earlier in Eq. (1); namely,

g(.’L’Z) = —x; + ‘.’L’Z + 1‘ — |.’L‘z — 1‘ (8)

Equation (8) can be decomposed into the following set of three linear equations:

i, for |z <1
g(xz;)) =49 —x;+2, fof x;>1 9)
—x; — 2, for z; < -1

The driving-point function g(z;) is depicted by the green curve I' in Fig. 3. The remaining part of the
state equation for each dynamical system in Table 2 coincides therefore with the discriminant function
w(w;i_1, U;, Uyr1) defined in Eq. (1). Since w(u;_1,u;, uyy1) is a constant real number® for each of the eight
vertices defined in Fig. 2, the state equation for each dynamical system in Table 2 can be recast into the

following eight simplified equations, one for each vertex @y n=0,1,2,...,7:
Vertex Discriminant Simplified Differential Equation

@ W(Ui—1, Us, Uiy1) &y = hp(2;)

0 w0)2w(-1,-1,-1) = i =g(z:)+w0) 2 holzs)

1 wl)2w(-1,-1,1) = @ =g(z)+wl) 2 hi(z)

2 w@) 2w(-11,-1) = @ =gla)+w2) 2 ha(z;)

3 w®) 2w(-1,1,1) = @ = g(zi) +w(3) 2 hs(z:) (10)
4 w@) 2w, -1,-1) = i =gla) +wd) 2 ha(z;)

5 w®) 2w, —1,1) = @ = gla;) +w(5) 2 hs(z;)

6  w(6)2w(,1,-1) = i = g(z) +w(6) 2 he(z))

7 w(?) 2w, 1,1) = &= g(ai) +w(7) 2 he(z;)

Each of these eight scalar differential equations dif-
fers from each other only by a constant. Figure 3
shows two typical cases; the upper curve corre-
sponds to a positive offset of w(n) > 0 whereas
the lower curve corresponds to a negative offset of
w(n) < 0. In this context, it is more meaningful to
call w(uj—1,u;,ui+1) in Eq. (1) an offset level.
Now, since the initial condition is, by assump-
tion in Table 2, always equal to z;(0) = 0, the
trajectory must begin from the upper initial point
P, (0) if w(n) > 0, or from the lower initial point
P_(0) if w(n) < 0. Since &; > 0 at all points to the
right of the initial point P, (0) on the upper curve,
the solution trajectory must “fow” momnotonically
to the right until it arrives at the right equilibrium
point Q4 located at z; = ZT;(Q4+). Conversely, the

trajectory must begin from the lower initial point
P_(0) if w(n) < 0 and flow leftwards until it ar-
rives at the left equilibrium point Q_. Any directed
path (indicated by bold arrowheads) on a translated
driving-point plot is called a dynamic route [Chua,
1969]. Once a dynamic route is specified, the steady
state value T;(Q4+) at the right equilibrium point,
or T;(Q-) at the left equilibrium point, can be iden-
tified by inspection. Observe that Z;(Q+) > 1 and
T;(Q-) < —1, always!

We are now ready to prove the following fun-
damental theorem from which Table 2 is generated.

Theorem 2. Explicit Output Formula. The state
x;(t) of each dynamical system listed in Table 2
with initial condition z;(0) = 0 converges mono-

8Note that even though u;_1, ui, and u;;1 are Boolean variables, they must be treated as real numbers here. This is the reason
why it is essential to use “—1” instead of “0” in the truth table in Fig. 2.
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X,

translated I’

A (x;) when w{z)>0

v

win)=0——=

{
N

initial condition
when win) =0

"‘}'
{left Q ' e
S equilibrium
equilibrigm :
i poimnt)
point)
x|(0) ~ Point plot
(Q P'[n]'| translated I plot)
h (x;) when w(n) <0
initial condition
when win)<U
Fig. 3.  Green curve I" denotes the plot of the driving-point function g(z;) of Eq. (1). Red curve denotes a vertical translation

of I upward by an offset level equal to w(n) >0, n=0,1,2

,..., 7. Blue curve denotes a vertical translation of I' downward

by an offset level equal to w(n) < 0. Each path with arrowhead is called a dynamic route depicting motion from initial point
P, (0) to attractor (equilibrium point) @4, or from initial point P_(0) to attractor Q—.

tonically to an attractor Q4 located at T;(Q+) > 1
for each input (u;—1,u;,u;+1) which gives rise to
a positive offset level w(u;—1,u;,ui+1) > 0, or to
an attractor Q_ located at T;(Q_) < —1 for each
input which gives rise to a megative offset level
w(wi—1, i, uiy1) < 0.

The corresponding output y;(t) converges to the
Boolean state y; = 1 in the former, and to the
Boolean state y; = —1 in the latter case. Moreover,
the steady-state output of Eq. (1) at equilibrium is
given explicitly by the formula (for initial condition
z;(0) = 0)

y; = sgn{w(o)} (11)

for any® discriminant function w(o) w(ui—1,
U, uj+1). For the particular w(o) given in Table 2,

the output at equilibrium is given explicitly by:

Attractor Color Code
y; =sgnf{z + |[21 £+ |20
+ (blui_l + bou; + b3u1+1|]|} (12)

Proof. Since the driving-point plot I' in Fig. 3 can
shift only up or down by an amount equal to the
offset level w(u;—1,u;, u;y1), it follows from the ge-
ometrical construction in Fig. 3 that 7;(Q+) > 1
and 7;(Q—) < —1. Moreover, since the initial con-
dition is located at P, (0) if w(n) > 0, or at P_(0)
if w(n) < 0, it follows from the dynamic route spec-

9Since the proof of Theorem 2 is independent of the choice of the discriminant function w(ui—1, Ui, uit+1), it follows that foru-
mula (11) is valid not only for the dynamical systems listed in Table 2 which are defined in terms of absolute-value functions,

but for any other discriminant function.
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ified (with arrowheads) in Fig. 3 that z;(¢) must in-
crease monotonically to @4 if w(n) > 0, and must
decrease monotonically to Q_ if w(n) < 0. Fi-
nally, it follows from Eq. (7) that y; — +1 whenever
Zi(Q+) > 0, or y; — —1 whenever 7;(Q_) < 0.

An exhaustive analysis of the dynamic routes
in Fig. 3 for each of the eight vertices shows that at
equilibrium,

yi — +1 if w(o) >0

yi =~ —1 if w(o) <0
where o 2 biui_1 + bou; + bsu;r1 = bl u. It follows
that

yi — sgn{w(uj—1,u;, uir1) W (13)

Table 2 consists of 64 pages, each page con-
tains the dynamical system and the local rule it
encodes, each one identified by its Rule number NV,
N =0,1,2,...,255. The truth table for each rule
N is generated by the associated dynamical system
defined in the upper portion of each quadrant, and
not from the truth table, thereby proving that each
dynamical system and the local rule it encodes are
one and the same. The truth table for each rule in
Table 2 is cast in the format of a “gene decoding
book” 10 with only 22° = 256 distinct 1 x 3 “neigh-
borhood patterns’. These patterns are ordered from
right to left starting with (0 0 0) as the least sig-
nificant binary bit, as in Fig. 39 of [Chua, 1998].
With this convention, the string of eight 1 x 3 pat-
terns (also called a “gene decoding tape” in [Chua,
1998]) shown directly above each Rule N in Table 2
is redundant (they are the same for all Rules) but
is included for ease of reference, as well as for com-
parison with examples in [Wolfram, 2002], where
the same format is used. Each color picture in Ta-
ble 2 consists of 30 x 61 pixels, generated by a one-
dimensional Cellular Automata (with 61 cells and a
periodic boundary condition) with a specified local
Rule N. For ease of comparison, we have adopted
the format used in pages 55-56 of [Wolfram, 2002]
where the top row corresponds to the initial pat-
tern, which is “0” (blue in Table 2) in all pixels
except the center pixel (labeled as cell 0 in Fig. 1)
which is “1” (red in Table 2). The evolution over
the next 29 iterations is conveniently displayed in
rows 2 to 30, as in [Wolfram, 2002]. A compari-
son of each pattern in Table 2 (which is generated

from a corresponding dynamical system) with the
corresponding pattern in [Wolfram, 2002] (which
is generated from a truth table) shows that they
are identical. This identification procedure provides
therefore a conceptually simple and constructive yet
completely rigorous proof that each dynamical sys-
tem in Table 2 and the local rule it encodes are one
and the same.

4.1. Dynamical System for Rule 110

For concreteness, let us examine one of the local
rules from Table 2, namely, Wolfram’s celebrated

Rule 110, the simplest universal Turing machine

known to date. The differential equation extracted

from in Table 2 is:
:bi:(—xi + |$Z + 1’ — |Z‘Z

Differential
Equation - 1’) + [_2 + |(ui—1
for + 2u; — 3ui+1 — 1)’]

z;(0)=0 (14)

Using the notation introduced in Egs. (3) and (5),
we can identify the following relevant data for

[Rule 110];

Projection:
O =Uj_1+ 2ui — 3ui+1

Orientation vector:

Data 1
for
Rule 110 b = 2
-3
Discriminant:

w(o)=—-2+|c—1] (@15)

Note that w(o) corresponds to Eq. (5) with zo =
—2, 21 = 0, zp = —1 and with the positive sign
adopted at both locations. The equilibrium solution
of the Differential Equation (14) gives the attractor

0The gene decoding book for the well-known two-dimensional Cellular Automata called Game of Life is cast in this format on
pages 145-152 of [Chua, 1998]. It has 2% = 512 distinct 3 x 3 neighborhood patterns.
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color code via the output equation (12) for each vertex @) of the Boolean cube no. 110 in Table 1; namely,

Attractor
Color Code
for

Y; = SgIl[—Q + ’(ui—l + QUZ - 3ui+1 — 1)’]

(16)

Substituting the input (u;_1,u;,u;+1) of each vertex @, n = 0,1,2,...,7, to Eq. (16), we obtain the
following eight simplified Differential Equations for | Rule 110 |:

Vertex Discriminant
@ w(Ui—1, Uiy Uig1)
. w(=1,-1,-1) = —2+|(-1—2+3—1)|
=1
) w(—=1,-1,1) = -2+ (-1 —-2-3-1)|
=5
5 w(—=1,1,-1) = -2+ [(-1+2+3—-1)|
=1
5 w(-1,1,1) = -2+ |(-1+2-3-1)|
=1
4 w(l,-1,-1)=-2+[(1-2+3-1)|
=1
- w(l,—1,1) = —2+|(1—-2—-3—1)]
=3
6 w(l,1,-1) = -2+ |1+2+3-1)]
=3
. w(l,1,1) = -2+ |14+2-3—-1)]

=-1

As always, the driving-point function g¢(z;) in
Eq. (17) is invariant for all Rules in Table 2, and is
given by Eq. (2).

Note that the color of the eight vertices in the
Boolean cube no. 110 in Table 1 is identical to that
predicted in Eq. (17), as expected.

4.2. There are Eight Attractors for
Each Local Rule

Our preceding in-depth analysis of the nonlinear dy-
namics of Egs. (1) and (2) via Eq. (10) and Fig. 3
shows that there may be two attractors (e.g. upper

Simplified Differential ~ Attractor  Color of
Equation Z;(Q) Vertex
{ti = g(l‘l) -1 -3 |
= & =g(x;)+5 7 [ |
= d&=g(x;)+1 3 [ ]
= I; = g(l‘l) +1 3 |
= X = g(.’L’Z) -1 -3 |
= &;=g(x;)+3 ) |
= & =g(x;)+3 5 [
= ml = g(l‘l) -1 -3 ]
(17)

curve in Fig. 3 has 2 attractors and 1 repellor) in
the one-dimensional, x;-state space for each input
(wi—1,ui, uir1); namely, one located at Z;(Q+) > 0
and the other located at Z;(Q—) < 0. Since there
are eight inputs corresponding to the eight vertices
of each Boolean cube in Table 1, it appears that
there may be 16 attractors for some local rules. This
observation is counter-intuitive because one would
expect that since there are eight vertices, one would
need only eight attractors for each local rule.

To resolve the above paradox, abserve that
our imposition of the initial condition z;(0) = 0
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wli=5 ——=
.q

Dwnamic route for vertex (D tends to
(0 )=7= vertex(Q) is red.

Dynamic route for vertex @ and@ tends o
% (0 )=5= vertex(3) and (&) arc red.

Dynamic route for vertex @ and (3) tends to
X(0 )=3= vertex (@) and (3) are red.

attractors @.15) apnd @_(6)

attractor Q.(1)

attractors @ (0),0 (4),
and Q (7)

attractors @ (2) and Q@ (1)

W =wdH=w{T1==1

Dynamic route for vertex @ , @ and () tends to
x(Q )=—3= vertex(Q) , @ and(@) are blue.

Fig. 4. Dynamic routes for |local Rule 110 |. The five initial points w(1), w(2), w(3), w(5), and w(6) lying above the x;-

axis converge to Q+(1), Q+(2), Q+(3), Q+(5), and Q+(6) respectively, implying these five vertices must be coded in red.
The remaining three initial w(0), w(4), and w(7) lying below the x;-axis converge to attractors Q_(0), Q@—(4), and Q_(7),
respectively, implying these three vertices must be coded in blue.

ensures that only one attractor is relevant for each
input.

It is sometimes convenient to interpret the three
input variables w;_1, u;, and u;+1 also as state vari-
ables by defining the following equivalent dynamical
system in R*:

&; = g(x;) + w(wi—1, ui, Uit1)
;-1 =0
18
=0 1
Uiy1 =10

Observe that Egs. (1) and (18) have identical solu-
tions if we choose the following initial conditions:

s 1(0) € {~1,1} (19)

uZ(O) € {—1, ].}
u;+1(0) € {-1,1}

The solutions of Eq. (18) consist of a continuum
of straight lines parallel to the x;-axis in the four-
dimensional Euclidean space R?*, as depicted in
Fig. 5(a) for the special case of only two inputs w;
and w;y1, thereby allowing a geometrical visualiza-
tion in R? with the z;-axis pointing outward from
the paper. We can interpret this geometrical struc-
ture as a special case of the truth table in Fig. 2
where u;_1 is fixed at u;_1 = 1 thereby reducing it
to only the last four rows corresponding to vertices
@, ®), ® and (@), equivalent to the truth table of the
XOR operation between the two binary variables u;
and u;+1. In this reduced setting, all trajectories of
the dynamical system (18) are parallel straight lines
passing through every point (u;,u;+1) within any
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(24, 14.)

=(01,-1)

¥ 1 | U,

(5 4 ) —ab
=01 = (%, %, 4,,)

=(0.L1)

: ....{ﬂ) —

0.(7)

\

(] (4) Projection of Blue attractor
Q(7)onfo x. =() plane.

Projectipm of Blue attractor

Q@ optox =0 plane.

Projection of Red attractor

Q(6) onto x; =0 plane.

Projection of Red attractor

@(5) onto x. =0 plane.

(b)

Fig. 5. (a) A three-dimensional state space with coordinates (z;, ui, ui+1). A square cross-section at z; = 0 is highlighted
with vertices corresponding to the front face of the Boolean cube in Table 1. Each parallel line is a trajectory with constant
u; and ui+1. (b) If we assume in u;—1 =1 in , we can visualize four attractors Q4 (6), Q+(5), @—(4), and Q_(7)
whose z;-coordinate coincides with that from Fig. 4.
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square cross-section of a Boolean cube in Table 1,
as depicted in Fig. 5(a) at x; = 0. In other words,
the general solutions of Eq. (18) look like a bundle
of parallel fibers within an assumed square cross-
section at z; = 0.

However, since we are only interested in binary
cellular automata in this paper, we need to exam-
ine only the fibers through the four vertices @, ®),
® and (@). An inspection of the dynamic routes
through these four vertices in Fig. 4 leads to the
four attractors Q_(4), Q+(5), Q+(6), and Q_(7);
they are located along each respective fiber with an
x;-coordinate value equal to Z;(4) = —3, T;(5) = 5,
Z;(6) = 5, and T;(7) = —3, respectively, as shown
in Fig. 5(b). By our earlier color code, the two at-
tractors Q4 (5) and Q4 (6) would be coded in red,
whereas the other 2 attractors @_(4) and Q_(7)
would be coded in blue. Observe that we now have

1, A

u=(L) | LB

exactly 22 = 4 attractors when there are only two
inputs, and there will be 23 = 8 attractors when
there are three binary inputs w;—1, u;, and w;41.
In general, we will have 2™ attractors for n binary
inputs. For example, in a two-dimensional cellular
automata with eight nearest neighbors, such as the
Game of Life, we would have 22 = 512 attractors
corresponding to the 512 vertices of a Boolean cube
in a nine-dimensional Euclidean space.

In view of the above one-to-one correspondence
between the number of attractors of a dynamical
system representation of a local Rule, and the num-
ber of vertices of its associated Boolean cube, there
is no loss of generality for us to use the color at
each vertex of a Boolean cube to encode the fourth
coordinate x; of each attractor, as we have done in
the bottom portion of Fig. 5(b). In other words,
each Boolean cube in Table 1 now encodes the four

orientation vector

h
b=| A

projection
AxIs

origin ]
a=0U

i,

Fig. 6. Geometrical interpretation of the scalar projection o(u) 2 bTu along the projection axis 0. Note that the length
G (u) of the perpendicular projection of each vertex u = (u;—1, ui, ui+1) of the Boolean cube onto the projection axis (which
coincides with the orientation vector b) is equal to dividing o(u) by ||b||* = (b3 + b3 + b3).
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Table 3. Calculation of y; = sgn[w(c)] for Rule 110 at vertex @ with b =
1 2 -37.
n| Ui U |Uip|G(n) |o(n)w(n)| ¥,

-043 | -6 5 1

21 -1 ] -1 0.29 4 | 1
3 -1 ] | -0.15 | -2 | 1
4 I -1 -1 0.15 2 -1 -1
5 1 -1 1 -0.29 | -4 3 1

6 ] | -1

0.43 6 3 1

binary coordinates (z;,u;—1,u;, ui+1), where z; is
assumed to be a binary variable after thresholding
via the output equation (7).

5. Every Local Rule has a Unique
Complexity Index

Theorem 2 from the preceding section, as well as
Table 2, provided a constructive proof that every
local rule can be generated by a dynamical sys-
tem whose attractors have a one-to-one correspon-
dence with the color of the vertices of a Boolean
cube which encodes the corresponding truth table
in Table 1. Perhaps the most surprising result from
Theorem 2 is the implication of Eq. (11), which as-
serts that each local Rule N depends only on the
single scalar projection variable o defined in Eq. (3),

regardless of the number of inputs.!! Moreover,

since the sgn(e) function is determined by the sign
of w(o), it follows that the binary output y;, or
equivalently, the color (red or blue) of each vertex
@ of each local rule depends entirely on the dis-
criminant function w(o). The fact that this result
should hold for alllocal rules is hard to believe but
it is true! It follows that the key to characterize
the properties and complexity of a local Rule is to
analyze the structure of the discriminant w(o) as a
function of o.

5.1. Geometrical Interpretation of
Projection o and Discriminant
w(o)

Since u = (u;_1,u;,u;11)" is simply a vector from
the origin (i.e. center of the Boolean cube) to one

HSince the proof of Theorem 2 never invokes in the individual inputs, but only on ¢ = b, it follows that Theorem 2 holds
for any number of inputs, including n = 9 in two-dimensional Cellular Automata with eight nearest neighbors.
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of the eight vertices of the cube, it follows that
o =bTu = biu;_1 +bou; + bsu;y1 is just the projec-
tion of u onto the orientation vector b, as depicted
in Fig. 6. To simplify our following geometrical
interpretation, it is convenient to examine the nor-
malized projection &(u) obtained by dividing o(u)
by ||b||> = b3 +b34-b2. Since |Ju|| = v/3 > 1, for any
vertex (), it follows that the normalized projection
o stays inside the cube. In particular, we can cal-
culate the value of 7(u) with respect to each vertezx
@, n=0,1,2,...,7 and mark the value of this nor-
malized projection along the normalized orientation
axis & defined by [by/||b||?> b2/|b||?> b3/|b|?*]*, as
shown in Fig. 7(a) for which we have just
analyzed in the preceding section. The calculated
values of 7(u) for are given in Table 3,
along with the value of the discriminant w(o) corre-
sponding to each vertex @, n =0,1,2,...,7. Each
value of &(u) is identified by a cross on the nor-
malized projection axis &, whose distance from the
origin is equal to the calculated value in Table 3.
Observe that the position and direction of 7 is de-
termined uniquely by the vector b = [by by  b3]7,
which has been named the orientation vector to em-
phasize its important role in the partitioning of the
normalized projection axis @. Observe also that
each cross on @ in Fig. 7(a) inherits the color of
its associated vertex.

Let us redraw the partitioned axis in the usual
horizontal position, as shown in Fig. 7(b), and
revert back to the original “unscaled” projection
axis .12

The final and crucial step of our analy-
sis consists of plotting the discriminant function
w(oc) = —2 + |0 — 1] for Rule 110, as shown in

Fig. 7(b). Observe that the resulting discriminant
curve w(o) has separated the red projection crosses
from the blue projection crosses in such a way that
w(o) > 0 for each o associated with a red cross
(shown directly below vertex no. @, ®), @), @ and
® in Fig. 7(b)) and w(o) < 0 at the remaining
crosses, namely the three blue crosses identified
with vertex @), @, and (7). The calculated values of
the discriminant for are given in Table 4.
An examination of Fig. 7(b) reveals the
presence of a zero-crossing, or transition point,
whenever a cross from a nearest-neighbor changes
sign. It follows that the selection of an appropriate
discriminant function having a desired set of transi-
tion points provides us with a simple algorithm for
synthesizing any local Rule from Table 2.

5.2. Geometrical Interpretation of
Transition Points of
Discriminant Function w(o)

Since ¢ 2 biui—1 + bou; + bsu;t1, each transition
point o = oy, that satisfies w(o;) =0 (07 = —1 and
o9 = 3 in Fig. 7(b)) defines a two-dimensional plane

biui—1 + bou; + b3uir1 = o, (20)
in the three-dimensional (u;_1, u;, u;+1) input space,
henceforth called a separation plane. For exam-
ple, the two separation planes associated with the
two transition points o1 = —1 and o9 = 3 for
with respect to the discriminant func-
tion w(o) = —2 4+ |o — 1| shown in Fig. 7(b) are as
follow:

Equation of Separation plane
through Transition point
c=01=-1:

Equation of Separation plane
through Transition point
oc=09=3:

ui—1 + 2u; — 3uip = —1

(21)

ui—1 + 2u; — 3ujp1r = 3

These two separation planes are sketched in Fig. 8
and identified by light blue and yellow colors, re-
spectively. We have superimposed on top of these
two pictures also the unscaled orientation wvector
o(u) = uj—1 + 2u; — 3u;41 to show that the yel-

low separation plane is 3 units above the origin
along the positive direction of the projection axis
o (northwest direction in this case) and that the
light blue separation plane is 1 unit below the ori-
gin. It is clear from Fig. 8 and Eq. (21) that the

2Note that the unscaled projection ¢ should always be used in any computation or design involving the discriminant w(c).
The normalized projection & is used in Fig. 7(a) to allow visualization on approximately the same scale as u. To avoid
cumbersome notations, we will sometimes use the scalar o(u) to denote the vector o(u)[b/(beb)], as in Fig. 8.
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-6
transition point | transition point 2

—3]T. Each projection (n) obtained

Fig. 7. (a) Projection of each vertex onto the normalized 7-axis defined by b =1 2
from Table 3 is marked by a cross bearing the same color as its associated vertex @. Note that vertices (Q)and (7)both project

into the origin. This “double” cross is depicted in (b) by a larger cross. (b) Actual projection o = b”u of each vertex redrawn
with separating curve w(o) shows two transition points, thereby requiring two parallel separating planes.
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Table 4. Calculation of the discriminant w(o) = —2+ |(wu—1+2u; —3uit1) — 1|
at vertex @.
" '..(gp-_--:+|{uli—ln_a1u”,l-r|g-31!:‘-‘-':
{i w(l)e =24 |(=1=-2%3)=lj==24 | =1 |m=]|
| wWil) = =24 |(-1-2-3)a] jm=24|-T|=5
2 wWi2je =24 |{s]1+2+ Q)| |==24|3=1]
3| w(dye=24(-1+2.3)-1}= =24 |-3|=1
4 W3 e =24 (1-24+3)-]lz=2+1E<=1
5| wiS)==-2+{-1-2-3)-1l}==2+|-5|=3 ‘-
i wih)= =24 |[(1+243)lj==2+[5|=3
7 wW{T)==24%|(1+2-3)-l|==2+%|-] |=~]

two separation planes are not only parallel to each
other, but they are also perpendicular to the orien-
tation vector b=1[1 2 —3]7. The orthogonality
relationship between a separation plane defined by
bTu = 0, and its associated orientation vector b is
also obvious if one views ¢ as one coordinate axis
of a rotated coordinate system through the origin
so that o = oy, is, by definition of a coordinate axis,
the plane perpendicular to the o-axis at the point
o= 0.

A careful inspection of Fig. 8 reveals the raison
etre for introducing the abstract concept of sepa-
ration planes;'® namely, they separate the vertices
into clusters of the same color.

5.3. Geometrical Structure of

Local Rules

The colored vertex separating ability of the sep-
aration planes is a truly fundamental geometric

property of the Euclidean Space, independent of the
choice of the basis function used to describe the dis-
criminant function w(o), so long as w(o) has the
same transition points. For example, we could have

chosen
w(o) = (0 —3)(c—1)=0*>—40+3 (22

and substituted it into Eq. (1) to obtain another
dynamical system

Alternate .

State L = g(wz) + (%‘-1 + 2u;
i 2

Equation _3ui+1) . 4(%’—1

for

+2u; — 3uit1) + 3

(23)

that would generate exactly the same local Rule;
namely, Rule 110 in this case. Indeed, instead of
using absolute-value functions in Table 2, we could

13The concepts of transition points and separation planes were first introduced in [Dogaru & Chua, 1999].
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prajection axis

alu)=b'u

orientation veclor

l. .J.-’.f:‘l’ o
2l @
- o0

Y

-
I

Equation of vellow plane :

ao-3=u_ +2 -3, ,—3=0

“._ | Equation of light blue plane :

o+l=u_ +2u -3u, +1=0

 Red vertices &) and @) lie above yvellow plane.
» Blue vertices (@.(0 and @ lie between yellow and light blue planes.
« Red vertices (3.0 and & lie below light blue plane.

Rule 110 : »=senl2+@ +2¢ -3, D]

Fig. 8.

Projection axis o(u) coincides with the orientation vector b = [1 2

— 3]T drawn through the center “0” of the

Boolean cube. It is orthogonal (i.e. intersects perpendicularly) to the two parallel planes.

have opted for polynomials. However, all rules in
Table 2 with k = 3 (integer in the upper right hand
corner) would now require a third degree polyno-
mial which would eat up significantly more space.

In a precise sense to be articulated below, every
local Rule has a characteristic structure which can
be identified by its separation planes. To stress the
fundamental role played by the choice of separa-
tion planes in this local Rule structural identifica-
tion process, we have extracted only the relevant
parts of Fig. 8 and redrawn it in Fig. 9.

5.4. A Local Rule with
Three Separation Planes

Some local Rules cannot be characterized by only
two separation planes because it may not be possi-
ble to separate the eight vertices neatly into three
colored groups and at the same time separate them
by two parallel planes, no matter how we posi-
tion the planes, or equivalently, no matter how we
pick the orientation vector b (recall the separation
planes are perpendicular to the orientation vector).
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+ Red vertices (O and(® lie above vellow plane.
+ Blue vertices (@.@ and @ lie between yellow and light blue planes_
« Red vertices (3).(D and & lie below light blue plane.

Rule 110

Fig. 9.

However, it is always possible to choose a suffi-
ciently large number of parallel planes to separate
the vertices by simply projecting them onto a pro-
jection axis corresponding to almost!'* every orien-
tation vector b. By scanning the sequence of red
and blue crosses on the o-axis, as in Fig. 7, we can
always choose a sufficiently large number of tran-
sition points that would separate any number of
groups of red crosses from neighboring groups of
blue crosses. Once again, the key to this remark-
ably easy task is the one-dimensional character of
the projection o.

Geometric structure of Rule 110.

An example of a local Rule which cannot be
separated by only two parallel planes is .
Suppose we pick the orientation vector, say b =
[-4 —2 1]T and determine the corresponding
projection axis o(u) = —4u;—1 —2u;+u;41 (pointing
in a South-Eastern direction). Using the calculated
data given in Table 5, we sketch the crosses along
the normalized projection axis & in Fig. 10(a). The
redrawn unscaled version shown in Fig. 10(b) shows
that we need five transition points to separate the
crosses; namely, o1 = —6, 09 = —2, 03 =0, 04 = 2,

The only exception is when two vertices having different colors happen to project onto the same point on the o-axis. This
is a pathological situation that rarely occurs [Dogaru & Chua, 1999].
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Table 5. Calculation of y; = sgn{w(o)] for Rule 150 at vertex @ with b =

-4 -2 17,
n| Ui U Ui |G (n) |o(n)w(n)| ¥,
0 -1 -1 -1 0.24 5 -1 -1
| -1 -1 1 0.33 7 1 1
i -1 1 -1 0.05 I 1 1
3 -1 1 1 0.14 3 -1 -1
4 1 -1 -1 -0.14 | -3 1 1
) | -1 1 -0.05 -1 -1 -1
6 1 1 -1 -0.33 -7 -1 -1
7 1 1 I -0.24 -5 1 1

and o5 = 6. A discriminant function w(o) having
these five zero crossings is shown in Fig. 10(b). This
function is given on top of Fig. 10(b). It follows
that a dynamical system for generating the local

Rule 150 | is as follows:

j?i = g(wl) + (—4ui,1 — 2’Uq' + qu)
— |(—4ui—1 — 2u; + uiy1 +4)

|
+ |(—4ui—1 — 2u; + uip1 + 1)
— |(—4uj—1 — 2u; + w41 — 1)|
+ [(—4ui-1 — 2u; +wip —4)] (24)

Another dynamical system which yields the same
local Rule in terms of a polynomial discriminant
function w(o) = o(0+6)(0+2)(0 —2)(0 —6) would
lead to an even messier state equation involving a
third degree polynomial of three variables u;_1, u;,

and Uj4-1-
Actually we can do even better by choosing an-
other orientation vector; namely b = [-4 — 2

4]T. Repeating the exercise with this orientation

vector leads to the simpler discriminant function
(see Table 6 for the calculated data): w(o) =
o — |o + 4| + |0 — 4| involving only three turning
points (see Figs. 11 and 12). The corresponding
state equation is given by:

&y = g(x;) + (—4ui—1 — 2u; + 4uiqq)
— |(—4ui—1 — 2u; + 4uipq +4)|
+ [(—4ui—1 — 2u; +4uir —4)] (25)

which is considerably simpler than Eq. (24).

In fact, by resorting to a composite structure
of nested absolute value functions, it is always pos-
sible to transform Eq. (25) into the most compact
form given in Eq. (5), namely,

State ti=g(x;) +{3—[[7—]-3
Equation +(_4u,_1 — U
for ! !

+Hui)[][}
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19

transition transition transition
point | point 2 point 4 point 5
Fig. 10. (a) Projection of each vertex onto the normalized &-axis defined by b = [-4 —2 1]7. (b) Actual projection

o = bTu of each vertex redrawn with separating curve w(c) shows five transition points, thereby requiring five parallel
separating planes.
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Fig. 11. (a) Projection of each vertex onto the normalized g-axis defined by b = [-4 —2 4]T. (b) Actual projection

o = bTu of each vertex redrawn with separating curve w(o) shows three transition points, thereby requiring only three

parallel separating planes.
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* Blue vertex (® lies above green plane.

* Red vertices @.,@and @ lie between yellow and green planes.

* Blue vertices @ ,® and® lie between yellow and light blue planes.
» Blue vertex @ lies below light blue plane.

Rule 150

Fig. 12. Geometric structure of Rule 150.
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Table 6. Calculation of y; = sgnw(o)] for Rule 150 at vertex
@ withb=[-4 -2 4]

a |l W 4 (U lain)|aln) h'l:h‘]‘ )
0] -1 -] g .06 2z rd -1

-] -1 1 0.28 0 2 |
- -1 1 -1 | 00 | -2 3 |

3 - 1 1 0a7 i -d -

b
—

- 1 -1 1 17| &

a
"

f 1 | -1 | 028 | -1

T | | i O | -2 r I

Table 7. Calculation of y; = sgn[w(o)] for Rule 232 at vertex
@withb=[1 1 1]7.

i "I-I H, "i‘-' EF[H‘] I‘r‘ﬂlwtﬂjl }Ii

0] -l =1 -1 -1 -3 3 =}

i -1 -1 [ N33 | -1 -} -]

b
¥

{133 | -1 -1 ]

] -l [ I .33 1 |

4 | -1 -1 | -033 | -1 -1 ~1

5 | -1 I 033 i [

fi l 1 =1 0.33 1 1
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@| 110

orientation vector

a(3) = a(5)=a(6) =033 1
— b={1

1
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Fig. 13. (a) Projection of each vertex onto the normalized 7-axis defined by b=1[1 1 1]7. (b) Actual projection ¢ = bTu
of each vertex redrawn with separating curve w(c) shows only one transition point, thereby requiring only one separating
plane located at o = 0, perpendicular to the orientation vector b=1[1 1 1]7 in (a).
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* Red vertices ® ,® ,© and @ lie above light blue plane.
* Blue vertices @, ,® and @ lie below light blue plane.

Rule 232

Fig. 14. Geometric structure of Rule 232.

It is this compact dynamical system which is listed  separated by only one plane. We will present two

in Table 2 for | Rule 150 |. typical examples in the subsection.
Example 1. |Rule 232

Using the orientation vector b = [I 1 1]7 and the
The colored vertices of many local Rules can be  data calculated for Rule 232 in Table 7, we obtain

5.5. Linearly Separable Rules
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Table 8. Calculation of y; = sgn[w(c)] for Rule 250 at vertex @ with b =
1o 17
n| Uiy U; |Upg|o(n)|or)wn)] Y
ol -1 | -1 | - =] 2 [PEINE
1| -1 | - 1 0 0 1 1
2 | - I -1 A 2 [

4 1 -1 -] 0 0 1

3 I -1 I 1 2 3 I
6 | 1 -1 0 0 | 1
7 1 1 l 1 2 3 1

the projections shown in Fig. 13. Since there is only
one transition point, the colored vertices of Rule 232
can be separated by only one plane, as shown in
Fig. 14.

Example 2.

Using the orientation vector b=[1 0 1]7 and the
data calculated for Rule 250 in Table 8, we obtain
the projections shown in Fig. 15. Once again, there
is only one transition point and hence the colored
vertices of Rule 250 can also be separated by only
one plane, as shown in Fig. 16.

Any local Rule whose colored vertices can be
separated by only one plane is said to be linearly
separable because its associated discriminant func-
tion w(o) is a straight line. A careful examination
of the 256 Boolean cubes in Table 1 shows that 104
among them are linearly separable. These are the

local Rules whose Rule number N is printed in Red.
The remaining 152 Rule numbers which are printed
in blue are not locally separable.

In addition to |Rule 110‘ and |Rule 150‘ pre-
sented earlier, a sample of five other Linearly-Non-
Separable Rules cited in [Wolfram, 2002], among
many others, are shown in Figs. 17-21; namely,

RuleQO‘, ‘Rule22‘, ‘Rule 3()|, ‘Rule90|, and

Rule 108 |.

For future reference, all 104 Linearly Separable
Rules and all 152 Linearly-Non-Separable Rules are
listed in Tables 9 and 10, respectively.

5.6. Complexity Index

By applying the projection technique illustrated in
the preceding sections, it is clear that the colored
vertices of every Boolean cube in Table 1 can be
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@ 11 i @] 1

L o) =a(2)=-1

orientation vector

Fig. 15. (a) Projection of each vertex onto the normalized 7-axis defined by b=1[1 0 1]7. (b) Actual projection ¢ = b™u
of each vertex redrawn with separating curve w(c) shows only one transition point, thereby requiring only one separating
plane located at ¢ = —1, perpendicular to the orientation vector b=1[1 0 1]7 in (a).



2752 L. O. Chua et al.

+ Hed venices (D 5.0 .0 .0 anl ) lie above fight blue plane.
 Blue veriices & and O lie bebow light hlue plane.

Rule 250

Fig. 16. Geometric structure of Rule 250.

+ Bl verticas D) DG and D e above yellow plane
¢ P verticed (2 mul (3 Tie between yellow and light Bloe planes.
¢ Hile vertex G Thes bekiw light blue plane

Rule 20

Fig. 17. Geometric structure of Rule 20.
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© ——
(o)
o0

v Ble vertioes (D D@ md D lie above yellow plane.
v Red vertioes 0, G ond G Tie berween velbow and fight ke plmes.
 Blhie veriex (5 lies below ligl blue plane.

Rule 22

Fig. 18. Geometric structure of Rule 22.

+ Blue vertices &, (@ and ) lie above vellow plane.
« Red vertices @, @and @& lie between vellow and light blue planes,
» Blue vertex @ les below light blue plane,

Rule 30

Fig. 19. Geometric structure of Rule 30.
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%

@0

©

o " O
o — 9
* Red vertices @ and ® lie above yellow plane.

* Blue vertices © ,®@ ,® and @ lie between yellow and light blue planes.
* Red vertices @ and @ lie below light blue plane.

Rule 90

o]
N

©

Fig. 20. Geometric structure of Rule 90.

# Riue veriex T lies abive velbisw plane
o Red vertices D, @, @ and @ lie between vollow and light blue planes.
v Hine vertices (5, & and G lie below i bl plais

Rule 108

Fig. 21. Geometric structure of Rule 108.
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Table 9. List of 104 Linearly Separable Boolean Function Rules.

0 | 2 3 4 5 7 8 10 11 12 13 14

._
]

16 17 19 21 23 31 32 34 35 42 41 47

48 49

1
=
Lh

7l
th

59 63 fid 68 oY 6 77 79

80 81 84 85 87 93 95 112 | 113 | 115 [ 117 | 119 | 127

128 | 136 | 138 | 140 | 142 | 143 | 160 | 162 | 168 [ 170 | 171 174 | 175

176 | 178 | 179 | 186 | 187 | 191 192 | 196 | 200 | 204 | 205 | 206 | 207

208 | 212 | 213 | 220 | 221 223 | 224 | 232 | 234 | 236 | 238 | 239 | 240
241 242 [ 243 | 244 | 245 | 247 | 248 | 250 | 251 | 252 | 253 | 254 | 255
Table 10. List of 152 Linearly Non-Separable Boolean Function Rules.

6 9 18 20 22 24 25 26 27 28 29 30 33

36 37 38 39 40 41 4 45 46 ¥ 53 54 56

57 58 60 61 62 65 66 67 70 71 72 73 74

75 78 82 83 86 88 89 90 91 92 94 96 97

98 99 100 [ 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110

111 114 | 116 | 118 | 120 | 121 122 | 123 | 124 | 125 | 126 | 129 | 130

131 132 | 133 | 134 | 135 | 137 | 139 [ 141 144 | 145 | 146 | 147 | 148

149 [ 150 | 151 152 | 153 | 154 | 155 | 156 | 157 [ 158 | 159 | 161 | 163

164 | 165 | 166 | 167 | 169 | 172 | 173 | 177 | 180 | 181 | 182 | 183 | 184

I85 | 188 | 189 [ 190 | 193 | 194 | 195 | 197 | 198 | 199 | 201 | 202 | 203

209 | 210 | 211 | 214 | 215 [ 216 | 217 | 218 | 219 | 222 | 225 | 226 | 227

228 | 229 | 230 | 231 | 233 | 235 | 237 | 246 | 249
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Table 11. Complexity Index x of Local Rules.

right

= 1 K= 2 = 3
2] 238 83 |72
All linearly Non- | 2% | 22 71 | 184
All linearly- Separable rules 10 | 216 | 53 | 202

Separable rules | (Table 10)thatdo | 40 | 200 | 16 | 139

(Table 9) notappearonthe | °% | 197 | 114 | 14

78 ¥ 92 163

105 1 50 7

separated by a finite number of parallel planes. In
general, each local rule can be separated by various
numbers of parallel planes, each one giving rise to
a different state equation which codes for the same
Rule. In other words, many distinct dynamical sys-
tems can be used to code for any local Rule listed
in Table 1. The 256 dynamical systems listed in
Table 2 represent only one choice with a compact
formula.

However, there is a unique integer x, henceforth
called the complexity index of a local Rule, which
characterizes the geometrical structure of the corre-
sponding Boolean cube, namely the minimum num-
ber of parallel planes that is necessary to separate
the colored vertices. Hence, all linearly separable
Rules have a complexity index of k = 1. A careful
analysis of Table 1 shows that each of the remain-
ing 152 Linearly Non-Separable Rules has a com-
plexity index of either 2 or 3 (see Table 11). For
example, Rule 110 has a complexity index of Kk = 2
whereas Rule 150 has a complexity of index k = 3.
The complexity index & of each local Rule is printed
in the upper right-hand corner of each quadrant of
Table 2.

5.7. [Every Local Rule is a Member
of an Equivalence Class

Two local Rules N7 and N» are said to be equiv-
alent iff there exists a transformation which maps

Rule N7 onto Rule Ny, and vice versa. The follow-
ing are two useful symmetry transformations:

1. Red < Blue complementary
transformation

The complement of a local Rule N; is a local
Rule N, where the colors of corresponding ver-
tices of corresponding Boolean cubes from Table 1
are complement of each other i.e. corresponding red
vertices become blue, and vice versa. Since the dy-
namics of Local Rule V7 can be predicted from that
of Local Rule N2 and vice-versa, we say Rules NV;
and Nj form a “Red <+ Blue complementary pair”.
Clearly, half of the Local Rules form “Red <> Blue
complementary pairs” with the other half. Table 12
gives the Red < Blue complementary pair of all
Local Rules from N* =128 to N* = 255.

2. Left + Right symmetrical
transformation

The Left <» Right symmetrical transformation of a
local Rule N; is a local Rule Ny obtained by inter-
changing the colors between vertices @) and ), as
well as between vertices (I) and @ in the Boolean
cube Nj from Table 1. Since the left and right
neighbors of each cell belonging to a left—right sym-
metrical pair in Table 2 will move in opposite but
laterally symmetric directions, we can predict the
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Table 12. List of 128 Red > Blue complementary pairs of Boolean Function Rules.

5 N 5 g ¥ e N N
127 §28 3 e (5} 12 1| I
128 2% 4 61 (5] 183 a0 23
123 130 a3 162 (3 194 bl b2
134 £ L] 163 B0 195 - gl
123 £32 g 164 5 194 a7 0
122 33 b 165 5§ 197 bl g
¥l £ S 56 57 198 H I
(L] s e i67 36 T b1 3
e Fas B 16% 5 200 b2 iy
TE] 7 e 1A% w 201 3 st
RE] &L B 170 53 02 2l el
I& (&L 8 i 2 203 an 234
13 140 LE] 172 1| 04 ] 34
14 141 B 72 0 put 12 7
113 g /1 174 45 i I7 it
112 141 A 17T i prd g I Ft]
kil i 79 176 7 208 is pt]|
It e 7 i i il 7 74|
1] yig b IT% 4 2 i3 b2
108 (V] 7 I (T 21 £2 243
107 T 5 150 43 212 ] bt |
108 e 4 151 4 213 Io e b
1os 15 7 152 41 214 ] 244
(e 1% T 1K 46 s ] 47
113] 152 7 Phs ] 214 7 4
a2 153 Jo irs IR ny & bl
101 154 =] %4 a7 214 ) 2
(L] 155 E3 e 35 Ny 4 ] |
L] 150 &7 15k 35 an 3 7]
GE 157 i (] k' 23| T 53
& 154 E5 15 33 = 1 2
o 154 £l 19 1z ik | (1] 24t
motion of one local Rule from the motion of its left—  vertex (D) of Boolean cube 124, and the color (red)

right symmetric pair, and vice versa. For example, of vertex (I) becomes the color of vertex @. The
Rules 110 and 124 form a left-right symmetrical  color of all other vertices are identical. Note that in
pair because the color (blue) of vertex @ in the  this case, the colors of vertices @) and () remain un-
Boolean cube 110 in Table 1 becomes the color of = changed because they are identical (both are red) so
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Table 13. List of 96 left <> right symmetrical pairs of Boolean Function
Rules.

N | N N N N | N N | N
2 16 40 96 130 144 168 224
k| 17 41 97 131 145 169 225
& 20 42 112 134 148 170 240
T 21 41 113 135 149 171 241
8 [ 44 100 136 192 172 128
g &3 45 101 137 193 173 229
] R’O 46 116 138 | 208 174 244
I Bl 47 117 139 | 209 175 245
12 68 56 o8 140 198 184 226
13 &9 5 99 141 197 L85 227
14 84 58 114 142- | 212 186 242
15 g5 59 115 143 | 213 187 243
24 66 60 102 152 194 188 230
P a7 61 103 153 195 189 23
26 B2 62 118 154 | 210 190 | 246
27 43 3 119 PasEl 211 191 247
28 i 74 #E 156 198 202 216
29 Tl 5 #9 157 199 203 217
30 86 T8 a2 158 | 214 206 220
31 &7 79 93 159 | 215 207 221
14 4% 106 | 20 162 176 234 248
i5 a4 107 121 163 177 235 249
38 12 110 F24 166 180 238 252
39 53 111 125 167 181 239 233

that interchanging them leads to the same pattern.
Observe next that the local Rule 150 is invariant
under a left <+ right symmetrical transformation be-
cause vertices () and @ have identical colors (both
are red); similarly, vertices @) and (6) also have iden-
tical colors (both are blue). Table 13 gives the com-
plete list of 96 distinct left <> right symmetrical
pairs.

Combining Tables 12 and 13, we obtain
Table 14 which lists the complete set of equivalent
classes of all local Rules from Table 1. The shaded

entries in this table correspond to those local Rules
that remain invariant under a left—right symmetri-
cal transformation, such as Rule 150.

Since all members belonging to the same equiv-
alent class of local Rules have identical complexity
indices, and exhibit dynamic behaviors that can be
predicted from each other, it suffices to undertake
an in-depth analysis of only one member from each
equivalent class. Using Tables 9, 10 and 14, we have
identified 33 independent Linearly Separable local
Rules (see Table 15) and 47 independent Linearly
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Table 14. Equivalent Classes of Boolean Function Rules.
'ln_t?h Red -+ Bine Lefy £+ Right Boolean Red +3* Blus Laft 4¢ Right Rookean Hed 4 Bine Left +* Right
Ruke Veriex Verien Rale Verirs Verten Rake Vertes Vertes
Wamber transformatinn tramsforuestion M ber transformation tramfarmation Number Tramsformetion tranafarmation
L] 254 4 I |2 .. |69 3
1 259 H in 100 £ |6& il
r ] 253 L[] 45 A L] 1)} L] [ 74
3 25 17 44 b | E& 0 166 yi!
4 251 [ 0K T % 65
E] 250 15 B} 4 El| 16
@ 40 il 48 0y 11 R 163 L
7 243 b | 5] L] k] 162 ™
B 47 il t1] Hiz L |68
@ 246 -1 b 1% k! 25 160
10 245 L] 2 .1 i s 159 &n
1 244 | £ M1 97 158 dl
2 241 L E4 | L] ] 157 A
13 247 L] 0 IEs L o 156 n
1" 24 LAY 5 198 L ] |45 44
15 240 &5 3 197 14 101 154 8
% 13 1 = 194 i 1177 143 ]
1”7 234 } L] 195 oz 103 52 |
18 247 &1 194 1n3 104 151
1] 136 &2 193 1§} ] 105 150
20 233 L] &3 192 (j] 104 149 120
#H EEES 7 G2 171 E 1o (£} (&1
n 433 &5 180 Q 108 147
2 132 &6 189 4 109 144
2 a1 L &7 188 bid 11 145 124
2 230 67 L 187 2 11l I (W53
6 FFL K2 1 1 &6 1z 112 143 2
ar 2% LK) m 18% 113 (L 43
2 7 gl 7 144 o) 114 3| 58
] 224 k| e} 143 113 1401 59
30 L] £ T 143 116 13 At
E1 | bl a7 | 141 {17 17 138 a7
b 7] 13 T4 140 L 11§ 13 62
kx| 232 n 1% e 134 63
i i} | 1] rx 178 120 35 106
31 220 49 ™ 17 o 121 124 LT
EL 219 ™ 176 o3 122 133
a7 118 Bl 173 10 123 133
33 7 51 R 174 n 124 131 1
£l At 1] B2 KE kL 124 13 imn
40 s i x| 173 il 12 1z
41 24 ul 84 i1} 14 127 128
a2 1] 112 LA (i) 1L} 128 127
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Table 14. (Continued)
Mosdesn Hed < Hiue Left v Right Bookesn Red <3 Bloe Left +* Right Buclean R 5 Mie Left 43 Right
Ml Verlen Vertes Huls Vertex Vertex Hule Vertes Vertes
Mamher Tramfirmation irnnaformation Mumbar Transformatine tramlnrmation Numher Framefermation irasafnrmstion

128 136 1m 0 e ] L 40 4
130 1% I+ 173 o) 129 26 1w FiL A
13 124 145 174 2 244 i s k! 0%
17 123 175 Ay 243 218 ar

133 121 176 T 11 na d&

134 121 45 177 ke |63 .| 35 L]
135 i) 149 178 7 it M w7
136 e 152 172 T 27 33

L¥T L% 193 180 5 £ ni 1

138 1y 205 18] ™ 167 pat all | 6E
138 118 209 182 it i (5]
140 13 (88 183 1 26 25 184
141 114 1eT 154 | X x i .43
2 113 212 [£:41 Tk 227 20 n 72
143 112 213 15 L 242 I i 29
144 11 (&) 187 fid 243 et ] =5 -3
145 e 138 IER RY 230 Fefl 24 189
146 0% [E ) il ek ] 27 P!

147 & L] 4 2ap 3 Ery

148 107 (K] 2] ] 247 - b1 | 248
(EHd (B3 133 {4 3 | 36 % 0 249
150 105 193 62 137 6 1%

141 1 194 il 133 137 1

152 103 154 193 (1] 133 38 17 252
142 [[Ex e 196 19 14 s 1% 23F
154 (K] 206 w7 5% 141 240 It Htl
154 | i 198 ¥ 156 M 1 i
| 56 ) 198 109 £ L5 42 13 185
L57 oy 9 fal ] 55 243 [ P LE7
15% ¥ 214 H - 44 1n 132
159 b ns 0 52 {2 i L G iTs
16 o5 n 2 U7 2a6 ] 4]
L&l & e 51 247 g {13
[62 23 76 25 50 248 s Iy
163 o im™ b a5 o) 240 [ prll
| Bl LH wr 4% i 50 3

1.5 ¥ e 47 138 151 4

| 5585 0 1% T 46 1w Fary 3 238
167 i3 &l 210 45 IH 253 2 239
(£ 7 o | 1 dil Iss 254 1

L a6 225 212 41 [ ¥ 255 1]

170 &5 24 213 42 143

| = 41 214 41 I5E
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Rule 110

Rule 127

Rule 238

Fig. 22.
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Rule |37 AND Rule 238

Rule 107

Rule 43
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Fig. 23.

gl 07

Ruole fid 1R

Bale 43

Non-Separable local Rules. All together, it suffices
to conduct an in-depth research on the nonlinear
dynamics and “global” complexity of only 80 in-
dependent local Boolean Function of three binary
variables.

5.8. Making Non-Separable from
Separable Rules

Linearly Separable local Rules have a complexity
index k = 1, by definition. These are the simplest
building blocks in the universe of Boolean cubes,
of any dimension. They are also the simplest to
implement on a chip.'® In terms of their nonlin-
ear dynamics, Linearly Separable Rules are also the

fastest to execute on a chip; namely, a few nanosec-
onds via current silicon technology, and at the speed
of light via current optical technology. Moreover,
the speed of the associated Cellular Automata is
independent of the size of the array — it takes
the same amount of time to run a two-dimensional
Linearly Separable Rule on a 10 x 10 array, or on a
108 x 105 array of Cellular Automata when executed
on a CNN chip.

It is proved in [Chua & Roska, 2002] that ev-
ery one or two-dimensional Linearly Non-Separable
Boolean Rule can be implemented by combining
only a finite number of Linearly Separable Rules
via standard logic operations (AND, OR, and XOR)
on each pixel of a CNN.'6 As the simplest special

5 All 104 local Rules are implemented on the CNN universal chip directly on hardware, i.e. without programming [Chua &

Roska, 2002].

6Every one of the 22 = 2712 ~ 10 distinct two-dimensional local Boolean Rules with nine inputs can be implemented
directly on current CNN universal chips by programming via a C-like user-friendly language [Chua & Roska, 2002].
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Rule 105 Rule 43

© O

S O ~

Rule 64 Rule 253

Fule 104

Fig. 24.

(Rule 4} OH Rulest) AND Rule 243

Rule 150

Rule 128

Fig. 25. | Bale 150 = (Rule 23

OH Role 128) AND Rule 244

case of this fundamental decomposition theorem,
Table 17 gives the explicit decomposition of all 152
Linearly Non-Separable local Rules from Table 10 in
terms of at most three Linearly Separable Rules and
combining them pizelwise only via AND and OR
logic operations. An inspection of this table shows

that in fact with the exception of |Rule 105| and
Rule 150 |, which require three Linearly Separable

building blocks, all others need only two. In this
sense, one could rank |Rule 105 ‘ and |Rule 150 ‘ as
the most complicated one-dimensional Cellular Au-
tomata cells to implement on a chip [Dogaru &
Chua, 1998].

The reader can easily verify the decompositions
in Table 17 by performing the prescribed logic op-
eration directly on corresponding vertices of the

relevant Boolean cubes extracted from Table 1.
Four examples of such decompositions are shown in

Figs. 22-25 for | Rule 110 | (involving only one AND

operation), | Rule 107 | (involving only one OR oper-
ation), and | Rule 105 |and Rule 150 (both involving
one AND and one OR operations).

5.9. Index 2 is the Threshold of
Complexity

By inspection of the patterns generated in Ta-
ble 2 for the 33 Linearly Separable Rules listed in
Table 15, and by invoking, the “equivalence class”
classification in Table 14, we find that no local Rule
with complexity inder k = 1 is capable of gen-
erating complex patterns, even for random initial
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conditions. It is clear therefore that in order to
exhibit emergence and complex phenomena, such as
those presented in [Chua, 1998],17 a local Rule must
have a minimum complexity index of Kk = 2. In
other words, borrowing the name from Wolfram, we
can assert that complexity index 2 is the threshold of
complexity for one-dimensional Cellular Automata.
This analytically-based assertion is certainly con-
sistent with the following empirically-based obser-
vation extracted from pages 105-106 of [Wolfram,
2002]:

The examples in this chapter suggest
that if the rules for a particular system
are sufficiently simple, then the system
will only ever exhibit purely repetitive
behavior. If the rules are slightly more
complicated, then nesting will also often
appear. But to get complexity in the
overall behavior of a system one needs
to go beyond some threshold in the com-
plexity of its underlying rules.

The remarkable discovery that we
have made, however, is that this thresh-
old is typically extremely low. And in-
deed in the course of this chapter we
have seen that in every single one of the
general kinds of systems that we have
discussed, it ultimately takes only very
simple rules to produce behavior of great
complexity.
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