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This tutorial provides a nonlinear dynamics perspective to Wolfram’s monumental work on A
New Kind of Science. By mapping a Boolean local Rule, or truth table, onto the point attractors
of a specially tailored nonlinear dynamical system, we show how some of Wolfram’s empirical
observations can be justified on firm ground. The advantage of this new approach for studying
Cellular Automata phenomena is that it is based on concepts from nonlinear dynamics and
attractors where many fuzzy concepts introduced by Wolfram via brute force observations can
be defined and justified via mathematical analysis. The main result of Part I is the introduction
of a fundamental concept called linear separability and a complexity index κ for each local
Rule which characterizes the intrinsic geometrical structure of an induced “Boolean cube” in
three-dimensional Euclidean space. In particular, Wolfram’s seductive idea of a “threshold of
complexity” is identified with the class of local Rules having a complexity index equal to 2.
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1. Introduction

The objective of this tutorial is to provide a non-
linear dynamics perspective to Stephen’s Wolfram’s
beautifully articulated masterpiece on A New Kind
of Science [Wolfram, 2002], which is based almost
entirely on empirical observations from computer
simulations. In particular, we will develop a
geometrical approach for defining an integer char-
acterization of all Boolean functions arising from
one-dimensional Cellular Automata with nearest
neighbors (our theory, however, is valid for any di-
mension and with any neighborhood size). This in-
teger, called the complexity index κ, is an intrinsic
measure of the structural complexity of every local
Rule. We will show that the complexity index pro-
vides a rigorous definition for Wolfram’s insightful
but fuzzy concept on “Threshold of complexity”, a
seductive idea without a definition!
Our object of study in this paper is a ring of

coupled cells Ci, i = 0, 1, 2, . . . ,N , as shown in
Fig. 1(a). For maximum generality, each cell Ci
is assumed to be a dynamical system, shown in
Fig. 1(b), with an intrinsic state xi, an output yi,
and three inputs ui−1, ui, and ui+1, where ui−1 de-
notes the input coming from the left neighboring
cell Ci−1, ui denotes the “self” input to cell Ci, and
ui+1 denotes the input coming from the right neigh-
boring cell Ci+1. Each cell evolves in accordance
with its prescribed dynamics, and has its own time
scale. When coupled together, the resulting system
would evolve in a way that is consistent with its
own “rule” as well as the “rule of interaction” im-
posed by the “coupling laws”. For the purpose of
this paper, we assume each input is a constant inte-
ger ui ∈ {−1, 1}, and the output yi(t) converges to
a constant yi ∈ {−1, 1} from a zero initial condition
xi(0) = 0 (a standing assumption in this paper). In

the context of Cellular Automata, we ignore the fact
that it takes a finite amount of time for any dynam-
ical system to converge to an attractor and idealize
the situation by assuming each attractor is reached
instantaneously. Under this assumption and in view
of the binary nature of both the input and the out-
put, our dynamical system is equivalent to a non-
linear map which can be uniquely described by a
truth table of three input variables (ui−1, ui, ui+1),
called a local Rule in [Chua, 1998] and [Wolfram,
2002]. Our choice of {−1, 1}, and not the conven-
tional symbols {0, 1} as our binary signals, is not
merely cosmetic but absolutely crucial in this paper
because we will map our truth table onto a dynam-
ical system where the state xi and output yi evolve
in real time via a carefully designed scalar ordinary
differential equation which is carefully designed so
that after the solution xi(t) (with zero initial state
xi(0) = 0) reaches a steady state, the output yi(t)
(which is defined via an output equation yi = y(xi))
tends to either 1 or −1. In other words, we will use
the attractors of the dynamical system to encode a
binary truth table.
Aside from the cell’s intrinsic time scale, which

is of no concern in Cellular Automata, we will
introduce an external clocking mechanism which
resets the input ui of each cell Ci at the end of
each clock cycle by feeding back the steady state
(i.e. attractor) output yi ∈ {−1, 1} as an updated
input ui ∈ {−1, 1} for the next iteration. The re-
sulting system is called a one-Dimensional Cellular
Automata with a periodic boundary condition. No-
tice that although cellular automata is concerned
only with the ring’s evolutions over discrete times,
any system or computer used to simulate cellular
automata is always a continuous time system with
a very small but non-zero time scale. Even the
personal computer which Stephen Wolfram uses to
create his spectacular collection of evolved patterns
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(a)

(b)

Fig. 1. (a) A one-dimensional Cellular Automata (CA) made of (N + 1) identical cells with a periodic boundary condition.
Each cell “i” is coupled only to its left neighbor cell (i−1) and right neighbor cell (i+1). (b) Each cell “i” has a state variable
xi(t), an output variable yi(t) and three constant binary inputs ui−1, ui, and ui+1.

are made of devices called transistors, and each
cellular automata iteration involves the physical
evolution of several million transistors, each having
its own intrinsic dynamics. These transistors evolve
in accordance with a very large system of nonlin-
ear differential equations governing the entire inter-
nal computer circuit and return the desired output
after converging to their respective attractors in a
non-zero amount of time, which translates into the
computer’s processing speed.
What we wish to emphasize here is that even

in discrete systems like cellular automata, there are
two different time scales involved. The first ap-
plies to the local Rule while the second applies to
the global patterns of evolution. To understand the
complex dynamics of global patterns, it is necessary
to examine both mechanisms.

This paper (Part I) is concerned only with the
mathematical characterization of local Rules. By
unfolding a “lifeless” truth table into an appropri-
ate nonlinear dynamical system, we can exploit the
theory of nonlinear differential equations [Shilnikov
et al., 1998; Shilnikov et al., 2001] to arrive at a
phenomena based on sound mathematical theory,
and not on empirical observations.

2. Cellular Automata is a Special
Case of CNN

CNN is an acronym for either Cellular Neural Net-
work when used in the context of brain science,
or Cellular Nonlinear Networks when used in the
context of coupled dynamical systems [Chua et al.,
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1995; Chua, 1998; Chua & Roska, 2002]. A CNN is
defined by two mathematical constructs:

1. A spatially discrete collection of nonlinear dy-
namical systems called cells,1 where information
can be encrypted into each cell via three indepen-
dent variables called input, threshold and initial
state.

2. A coupling law relating one or more relevant vari-
ables, such as state, output, etc., of each cell Cij
to all neighbor cells Ckl located within a pre-
scribed sphere of influence2 sij(r) of radius r,
centered at Cij .

In the special case where the CNN consists of
a homogeneous array, and where its cells have no
inputs, no thresholds, and no outputs, and where
the sphere of influence extends only to the nearest
neighbors, the CNN reduces to the familiar concept
of a nonlinear lattice.
From a technological perspective, CNN rep-

resents currently the only practical method for
fabricating a cell array of meaningful size for image
processing applications. Because of its local connec-
tivity (r = 1), it is currently possible to cram more
than 4 million CMOS transistors into a 128 × 128
CNN chip on 1 square centimeter area of silicon
and dissipating less than 4 watts of power [Liñan
et al., 2002].3 This chip, called a CNN Universal
Chip, as well as several other competing chips, can
be programmed via a user-friendly language so that
instead of implementing only one evolution law per
chip, an entire sequence of evolution laws can be
programmed and executed all on the same chip just
like a personal computer. In this case, however,
we have an enormously more powerful and orders
of magnitude faster computer because every CNN
cell in the array is processing information simulta-
neously, a truly parallel computer on a chip! For
many mission critical applications, such as tracking
a missile in flight, an earlier 64×64 CNN chip has al-
ready outperformed a conventional supercomputer
in terms of processing power.
We will prove in Sec. 4 that for each one-

dimensional cellular automata with nearest neigh-

bors and any prescribed local Boolean function of
three binary variables (ui−1, ui, ui+1), we can design
a CNN cell defined by a scalar nonlinear differential
equation whose corresponding output tends to an
attractor which codes the desired local rule. More-
over, all of these cells have the same “structural”
form in the sense that a single scalar nonlinear dif-
ferential equation can be tuned to yield a correct
binary output consistent with any prescribed local
rule by simply choosing eight real numbers. Such
a task can be easily implemented on a CNN either
by straightforward programming, or by using a de-
signer’s CNN cell and executed in a few nanosec-
onds with current technology. We will illustrate
both avenues in Sec. 4. Furthermore, it will fol-
low from our analysis in Sec. 4 that our theory is
independent of the size of the sphere of influence,
as well as, on the spatial dimension of the CNN.
In other words, we have the following fundamental
result4:

Theorem 1. Every binary cellular automata of
any spatial dimension is a special case of a CNN
with the same neighborhood size.

3. Every Local Rule is a Cube with
Eight Colored Vertices

A Boolean function is usually described in computer
science or informatics by a truth table where each
binary variable is represented symbolically by ei-
ther a “0” or a “1”. In this paper, it is absolutely
essential that we use “−1” and “1” instead of “0”
and “1” because these variables, except in a few
strictly Boolean settings, must be interpreted as
real numbers in all subsequent mathematical anal-
ysis and calculations, such as solving differential
equations, which are all based on the real number
system. Hence, the truth table for a Boolean func-
tion of three binary variables ui−1, ui, and ui+1
will be depicted as in the upper part of Fig. 2.
The only exception to this assumption is in the
output yi of cell “Ci” where we may revert back
to “0” and “1” whenever it does not enter into

1The cells need not be identical and are usually arranged uniformly on a two- or three-dimensional orientable manifold in
space, e.g. rectangular, hexagonal, toroidal, spherical arrays, etc. The variables may assume continuous values or a finite
number of discrete symbols. The dynamical system may be specified by an evolution law or algorithm, such as a differential
equation, a difference equation, an iterative map, a semigroup, etc.
2For example, r = 1 for all nearest neighbors and r = 2 for all nearest and next nearest neighbors.
3In contrast, because of its full connectivity where each cell is coupled to every other cell, the famous Hopfield network has
remained only as a useful conceptual tool.
4We conjecture that Theorem 1 holds not only for binary cellular automata, but also for any finite number of states.
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Fig. 2. Each Boolean function of three binary variables can be uniquely represented by a Boolean cube with colored vertices.
The center of the cube is located at the origin of the three-dimensional (ui−1, ui, ui+1)-space. The coordinates of each vertex
©k correspond to row k of the truth table. The number 2k shown next to vertex ©k is its decimal equivalent.

any arithmetic or algebraic calculations. For
example, it is more convenient to decode the output
yi = (γ7, γ6, γ5, γ4, γ3, γ2, γ1, γ0) in decimal system
by recasting it into its equivalent binary form yi =
(β7, β6, β5, β4, β3, β2, β1, β0) where βj is either a “0”

or “1” so that the corresponding decimal number
is simply the integer N = β7 • 27 + β6 • 26 + β5 •
25 + β4 • 24 + β3 • 23 + β2 • 22 + β1 • 21 + β0 • 20,
as shown in the upper part of Fig. 2. Since there
are 22

3
= 256 distinct combinations of this eight-bit
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word, there are exactly 256 distinct Boolean func-
tions, each one identified uniquely by an integer N ,
where N = 0, 1, 2, . . . , 255. It is important to ob-
serve that the output yi specifies either a Boolean
rule (when coded in “−1” and “1”) or its identifi-
cation number (when coded in “0” or “1”). This
“dual” role assumed by yi follows the convention
adopted in [Chua, 1998; Wolfram, 2002].
Since the three binary variables uu−1, ui, and

ui+1 in a one-dimensional Cellular Automata are
coded in terms of real numbers “−1” and “1”, we
can identify each input (ui−1, ui, ui+1) as a vertex
of a cube (of length 2 on each side) centered at
the origin. It is also extremely convenient to re-
fer to each of these eight vertices by an integer
0, 1, 2, . . . , 7, by reverting back to its correspond-
ing three-bit binary word. For example, the bi-
nary word associated with the vertex located at
(−1, 1, 1) is 011, which decodes into the integer
3. In other words, we can identify uniquely each
vertex of the Boolean cube by an integer n, where
n ranges from 0 to 7. We will henceforth adopt this
identification scheme, as depicted in the lower part
of Fig. 2, where each vertex number is enclosed by
a circle.
Observe next that if we paint each vertex ©n

red when yi is “1”, or blue, when yi is “−1” in row
“n” of the truth table, then the resulting “Boolean
cube” contains exactly the same information as the
truth table. This simple equivalent description of
a Boolean function of three binary variables repre-
sents not only a very compact description, it also
turns out to be crucially important in Sec. 5 where
the cube’s spatial geometry will be fully exploited to
arrive at a unique characterization of the structural
complexity of a Boolean function.
Each of the 256 Boolean cubes is listed in

Table 1 along with its identification number, hence-
forth called its rule number.5 Note that each rule
number is printed either in red, or in blue, which
codes for a Linearly Separable rule, and a Linearly
Non-Separable rule, respectively. The significance

of these two classes of Boolean rules will be revealed
in Sec. 5.
Given any Boolean cube from Table 1, we can

easily identify its rule number by simply adding
the decimal number 2k for each integer k associ-
ated with a red vertex. For example, the deci-
mal numbers associated with the five red vertices
©1 , ©2 , ©3 , ©5 and ©6 (for rule 110) is equal to
21 + 22 + 23 + 25 + 26 = 110, which can be triv-
ially read off the decimal numbers shown next to
each vertex in Fig. 2, viz. 2+4+8+32+64 = 110,
as expected.

4. Every Local Rule is a Code for
Attractors of a Dynamical System

Our main result of this paper is to provide a con-
structive and explicit proof that every Boolean func-
tion, or local rule, N from Table 1 can be mapped
into a nonlinear dynamical system whose attrac-
tors encode precisely the associated truth table N ,
N = 0, 1, 2, . . . , 255. In particular, the dynamical
system can be chosen to be a scalar ordinary differ-
ential equation of the form.6

ẋi = g(xi) + w(ui−1, ui, ui+1)

xi(0) = 0
(1)

where

g(xi)
∆
= −xi + |xi + 1| − |xi − 1| (2)

henceforth called the driving-point function,7 and
w(ui−1, ui, ui+1) is a scalar nonlinear function of
three real variables ui−1, ui, and ui+1 for each lo-
cal rule N , N = 0, 1, 2, . . . , 255. In particular,
w(ui−1, ui, ui+1) can be chosen [Dogaru & Chua,
1999], to be a composite function w(σ) of a single

5Table 1 is a reordered version of Fig. 57 from [Chua, 1998], where the binary rule number yi of the truth table in Fig. 2 was
decoded with γ7 as the least significant digit.
6There are many possible choices of nonlinear “basis function” for g(xi) and w(ui−1, ui, ui+1), such as polynomials. We have
chosen the absolute value function f(x) = |x| as our nonlinear “basis function” in this paper not only because the resulting
equation can be expressed in an optimally compact form which fits the limited space provided in Table 2, but also because
it allows us to derive the solution of Eq. (1) in an explicit form. Moreover, it is much easier to build chip for implementing
Eq. (1) with absolute-value functions via current microelectronics technology.
7Equation (1) is solved explicitly in [Chua, 1969] for any piecewise-linear driving-point function. The terminology “driving
point” comes from nonlinear circuit theory and need not concern readers of this paper. Many other driving-point functions
which produce the same local rule N can be chosen; for example, we can choose g(xi) = xi − x3i , which looks simpler
mathematically, but much more difficult to implement on a chip.
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Table 1. List of 256 Boolean Function “Cubes” defining all Boolean functions of three binary variables.
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Table 1. (Continued)
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Table 1. (Continued)
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Table 1. (Continued)
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variable

σ
∆= b1ui−1 + b2ui + b3ui+1

∆= bTu (3)

henceforth called a projection in this paper, where

b =



b1

b2

b3


 and u =



ui−1

ui

ui+1


 (4)

are called an orientation vector and input vector,
respectively, and where

w(σ)
∆
= {z2 ± |[z1 ± |z0 + σ|]|} (5)

Depending on the context where it is most meaning-
ful, the composite function w(σ) is called a discrim-
inant function, or an offset level [Chua, 1998] in this
paper. Observe that even though the discriminant
w(σ) is a function of three input variables ui−1, ui,
and ui+1 in view of Eq. (3), it is a scalar function of
only one variable σ. This rather special mathemat-
ical structure of w(σ) is the single most important
property which makes it such a delightfully simple
task to map each local rule onto a nonlinear dynam-
ical system and painlessly perceive its trajectories
converging into various attractors which can then
be coded in a truth table in a one-to-one manner!
The same discriminant function w(σ) is used

to define the appropriate differential equation (1)
for generating the truth table of all 256 Boolean
cubes listed in Table 1. Each local rule corresponds
to a particular set of six real numbers {z2, z1, z0;
b1, b2, b3}, and two integers ±1. All together only
eight parameters are needed to uniquely specify the
differential equation (1) associated with each local
rule N , N = 0, 1, 2, . . . , 255. Since eight bits are
needed to specify each local rule, or the colors of
eight vertices are needed to specify each Boolean
cube, the discriminant function is optimal in the
information-theoretic sense that it calls for only the
minimum number of information needed to uniquely
specify a Boolean function of three binary variables.
We will prove below that once the parame-

ters defining a particular local rule N from Table 1
are specified, then for any one of the eight inputs
(ui−1, ui, ui+1) listed in the truth table in Fig. 2, the
solution xi(t) of the scalar differential equation (1)
will either increase monotonically from the initial
state xi = 0 toward a positive equilibrium value

xi(n) ≥ 1, henceforth denoted by attractor Q+(n),
or decrease monotonically towards a negative equi-
librium state xi(n) ≤ −1, henceforth denoted by
attractor Q−(n), when the input (ui−1, ui, ui+1) in
Eq. (1) is chosen from the coordinates of vertex ©n
of the associated Boolean cube in Fig. 2; or equiv-
alently, from row “n” of the truth table in Fig. 2,
for n = 0, 1, 2, . . . , 7. Observe that if we paint ver-
tex ©n red whenever its equilibrium value xi(n) ≥ 1,
and blue whenever xi(n) ≤ −1, then the color of all
eight vertices for the associated Boolean cube will
be uniquely specified by the equilibrium solutions
of the eight associated differential equations. If we
simulate Eq. (1) with a chip, the equilibrium state
will be attained in only a few nanoseconds (10−9 sec-
onds), which is practically instantaneous for many
real-world applications.
In short, once the parameters associated with a

particular local rule from Table 1 are specified, the
corresponding truth table or Boolean cube, will be
uniquely generated by the scalar differential equa-
tion (1) alone. Note, however, that the equilibrium
value of xi(n) is not equal in general to ±1 and
is thereby not a binary number although we have
managed to assign a color correctly to each vertex,
under the implicit “understanding” that vertex ©n
will be coded red if xi(n) ≥ 1, or blue if xi(n) ≤ −1.
To avoid having to make such an ad hoc as-

sumption, we will formally identify each local rule
in Table 1 by a dynamical system defined as follows:

State Equation

ẋi = f(xi; ui−1, ui, ui+1)

xi(0) = 0
(6)

Output Equation

yi = y(xi)
∆
=
1

2
(|xi + 1| − |xi − 1|) (7)

Observe from Eq. (7) that yi = +1 when xi ≥ 1,
and yi = −1 when xi ≤ −1, thereby making it un-
necessary to introduce the harmless though ad hoc
assumption.
The dynamical systems for generating all 256

local rules in Table 1 are compiled in Table 2 for fu-
ture reference. In each case, the scalar differential
equation (1) is obtained by substituting the expres-
sion y(xi) from the output equation in place of the
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Table 2. Dynamical system for generating all 256 local rules listed in Table 1. The differential equation is obtained by
substituting the output equation for yi in the state equation. The initial condition is xi(0) = 0.
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)



A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part I 2685

Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)



A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part I 2707

Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)



2712 L. O. Chua et al.

Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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Table 2. (Continued)
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output variable yi in the state equation. The initial conditions for all 256 dynamical systems listed in
Table 2 are the same, namely, xi(0) = 0.
Observe that all dynamical systems listed in Table 2 have identical driving-point functions g(xi), defined

earlier in Eq. (1); namely,

g(xi) = −xi + |xi + 1| − |xi − 1| (8)

Equation (8) can be decomposed into the following set of three linear equations:

g(xi) =




xi , for |xi| ≤ 1
−xi + 2 , fof xi > 1

−xi − 2 , for xi < −1
(9)

The driving-point function g(xi) is depicted by the green curve Γ in Fig. 3. The remaining part of the
state equation for each dynamical system in Table 2 coincides therefore with the discriminant function
w(ui−1, ui, uu+1) defined in Eq. (1). Since w(ui−1, ui, uu+1) is a constant real number8 for each of the eight
vertices defined in Fig. 2, the state equation for each dynamical system in Table 2 can be recast into the
following eight simplified equations, one for each vertex ©n, n = 0, 1, 2, . . . , 7:

Vertex Discriminant Simplified Differential Equation

©n w(ui−1, ui, ui+1) ẋi = hn(xi)

0 w(0)
∆
= w(−1,−1,−1) ⇒ ẋi = g(xi) + w(0)

∆
= h0(xi)

1 w(1)
∆
= w(−1,−1, 1) ⇒ ẋi = g(xi) + w(1)

∆
= h1(xi)

2 w(2)
∆
= w(−1, 1,−1) ⇒ ẋi = g(xi) + w(2)

∆
= h2(xi)

3 w(3)
∆
= w(−1, 1, 1) ⇒ ẋi = g(xi) + w(3)

∆
= h3(xi)

4 w(4)
∆
= w(1,−1,−1) ⇒ ẋi = g(xi) + w(4)

∆
= h4(xi)

5 w(5)
∆
= w(1,−1, 1) ⇒ ẋi = g(xi) + w(5)

∆
= h5(xi)

6 w(6)
∆
= w(1, 1,−1) ⇒ ẋi = g(xi) + w(6)

∆
= h6(xi)

7 w(7)
∆
= w(1, 1, 1) ⇒ ẋi = g(xi) + w(7)

∆
= h7(xi)

(10)

Each of these eight scalar differential equations dif-
fers from each other only by a constant. Figure 3
shows two typical cases; the upper curve corre-
sponds to a positive offset of w(n) > 0 whereas
the lower curve corresponds to a negative offset of
w(n) < 0. In this context, it is more meaningful to
call w(ui−1, ui, ui+1) in Eq. (1) an offset level.
Now, since the initial condition is, by assump-

tion in Table 2, always equal to xi(0) = 0, the
trajectory must begin from the upper initial point
P+(0) if w(n) > 0, or from the lower initial point
P−(0) if w(n) < 0. Since ẋi > 0 at all points to the
right of the initial point P+(0) on the upper curve,
the solution trajectory must “flow” monotonically
to the right until it arrives at the right equilibrium
point Q+ located at xi = xi(Q+). Conversely, the

trajectory must begin from the lower initial point
P−(0) if w(n) < 0 and flow leftwards until it ar-
rives at the left equilibrium point Q−. Any directed
path (indicated by bold arrowheads) on a translated
driving-point plot is called a dynamic route [Chua,
1969]. Once a dynamic route is specified, the steady
state value xi(Q+) at the right equilibrium point,
or xi(Q−) at the left equilibrium point, can be iden-
tified by inspection. Observe that xi(Q+) > 1 and
xi(Q−) < −1, always!
We are now ready to prove the following fun-

damental theorem from which Table 2 is generated.

Theorem 2. Explicit Output Formula. The state
xi(t) of each dynamical system listed in Table 2
with initial condition xi(0) = 0 converges mono-

8Note that even though ui−1, ui, and ui+1 are Boolean variables, they must be treated as real numbers here. This is the reason
why it is essential to use “−1” instead of “0” in the truth table in Fig. 2.
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Fig. 3. Green curve Γ denotes the plot of the driving-point function g(xi) of Eq. (1). Red curve denotes a vertical translation
of Γ upward by an offset level equal to w(n) > 0, n = 0, 1, 2, . . . , 7. Blue curve denotes a vertical translation of Γ downward
by an offset level equal to w(n) < 0. Each path with arrowhead is called a dynamic route depicting motion from initial point
P+(0) to attractor (equilibrium point) Q+, or from initial point P−(0) to attractor Q−.

tonically to an attractor Q+ located at xi(Q+) > 1
for each input (ui−1, ui, ui+1) which gives rise to
a positive offset level w(ui−1, ui, ui+1) > 0, or to
an attractor Q− located at xi(Q−) < −1 for each
input which gives rise to a negative offset level
w(ui−1, ui, ui+1) < 0.
The corresponding output yi(t) converges to the

Boolean state yi = 1 in the former, and to the
Boolean state yi = −1 in the latter case. Moreover,
the steady-state output of Eq. (1) at equilibrium is
given explicitly by the formula (for initial condition
xi(0) = 0)

yi = sgn{w(σ)} (11)

for any9 discriminant function w(σ)
∆
= w(ui−1,

ui, ui+1). For the particular w(σ) given in Table 2,

the output at equilibrium is given explicitly by:

Attractor Color Code

yi = sgn{z2 ± |[z1 ± |z0
+ (b1ui−1 + b2ui + b3ui+1|]|} (12)

Proof. Since the driving-point plot Γ in Fig. 3 can
shift only up or down by an amount equal to the
offset level w(ui−1, ui, ui+1), it follows from the ge-
ometrical construction in Fig. 3 that xi(Q+) > 1
and xi(Q−) < −1. Moreover, since the initial con-
dition is located at P+(0) if w(n) > 0, or at P−(0)
if w(n) < 0, it follows from the dynamic route spec-

9Since the proof of Theorem 2 is independent of the choice of the discriminant function w(ui−1, ui, ui+1), it follows that foru-
mula (11) is valid not only for the dynamical systems listed in Table 2 which are defined in terms of absolute-value functions,
but for any other discriminant function.
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ified (with arrowheads) in Fig. 3 that xi(t) must in-
crease monotonically to Q+ if w(n) > 0, and must
decrease monotonically to Q− if w(n) < 0. Fi-
nally, it follows from Eq. (7) that yi → +1 whenever
xi(Q+) > 0, or yi → −1 whenever xi(Q−) < 0.
An exhaustive analysis of the dynamic routes

in Fig. 3 for each of the eight vertices shows that at
equilibrium,

yi → +1 if w(σ) > 0

yi → −1 if w(σ) < 0

where σ
∆
= b1ui−1+ b2ui+ b3ui+1 = bTu. It follows

that

yi → sgn{w(ui−1, ui, ui+1)} � (13)

Table 2 consists of 64 pages, each page con-
tains the dynamical system and the local rule it
encodes, each one identified by its Rule number N ,
N = 0, 1, 2, . . . , 255. The truth table for each rule
N is generated by the associated dynamical system
defined in the upper portion of each quadrant, and
not from the truth table, thereby proving that each
dynamical system and the local rule it encodes are
one and the same. The truth table for each rule in
Table 2 is cast in the format of a “gene decoding
book”10 with only 22

3
= 256 distinct 1 × 3 “neigh-

borhood patterns”. These patterns are ordered from
right to left starting with (0 0 0) as the least sig-
nificant binary bit, as in Fig. 39 of [Chua, 1998].
With this convention, the string of eight 1× 3 pat-
terns (also called a “gene decoding tape” in [Chua,
1998]) shown directly above each Rule N in Table 2
is redundant (they are the same for all Rules) but
is included for ease of reference, as well as for com-
parison with examples in [Wolfram, 2002], where
the same format is used. Each color picture in Ta-
ble 2 consists of 30× 61 pixels, generated by a one-
dimensional Cellular Automata (with 61 cells and a
periodic boundary condition) with a specified local
Rule N. For ease of comparison, we have adopted
the format used in pages 55–56 of [Wolfram, 2002]
where the top row corresponds to the initial pat-
tern, which is “0” (blue in Table 2) in all pixels
except the center pixel (labeled as cell 0 in Fig. 1)
which is “1” (red in Table 2). The evolution over
the next 29 iterations is conveniently displayed in
rows 2 to 30, as in [Wolfram, 2002]. A compari-
son of each pattern in Table 2 (which is generated

from a corresponding dynamical system) with the
corresponding pattern in [Wolfram, 2002] (which
is generated from a truth table) shows that they
are identical. This identification procedure provides
therefore a conceptually simple and constructive yet
completely rigorous proof that each dynamical sys-
tem in Table 2 and the local rule it encodes are one
and the same.

4.1. Dynamical System for Rule 110

For concreteness, let us examine one of the local
rules from Table 2, namely, Wolfram’s celebrated

Rule 110 , the simplest universal Turing machine
known to date. The differential equation extracted

from Rule 110 in Table 2 is:

Differential
Equation
for
Rule 110

ẋi=(−xi + |xi + 1| − |xi
− 1|) + [−2 + |(ui−1
+ 2ui − 3ui+1 − 1)|]

xi(0)=0 (14)

Using the notation introduced in Eqs. (3) and (5),
we can identify the following relevant data for

Rule 110 :

Data
for
Rule 110

Projection:

σ = ui−1 + 2ui − 3ui+1
Orientation vector:

b =




1

2

−3




Discriminant:

w(σ) = −2 + |σ − 1| (15)

Note that w(σ) corresponds to Eq. (5) with z2 =
−2, z1 = 0, z0 = −1 and with the positive sign
adopted at both locations. The equilibrium solution
of the Differential Equation (14) gives the attractor

10The gene decoding book for the well-known two-dimensional Cellular Automata called Game of Life is cast in this format on
pages 145–152 of [Chua, 1998]. It has 29 = 512 distinct 3× 3 neighborhood patterns.
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color code via the output equation (12) for each vertex ©n of the Boolean cube no. 110 in Table 1; namely,

Attractor
Color Code
for
Rule 110

yi = sgn[−2 + |(ui−1 + 2ui − 3ui+1 − 1)|] (16)

Substituting the input (ui−1, ui, ui+1) of each vertex ©n , n = 0, 1, 2, . . . , 7, to Eq. (16), we obtain the
following eight simplified Differential Equations for Rule 110 :

Simplified Differential Attractor Color of
Vertex Discriminant Equation xi(Q) Vertex

©n w(ui−1, ui, ui+1) ẋi = hn(xi) ©n

0
w(−1,−1,−1) = −2 + |(−1− 2 + 3− 1)|

= −1 ⇒ ẋi = g(xi)− 1 −3 �

1
w(−1,−1, 1) = −2 + |(−1− 2− 3− 1)|

= 5
⇒ ẋi = g(xi) + 5 7 �

2
w(−1, 1,−1) = −2 + |(−1 + 2 + 3− 1)|

= 1
⇒ ẋi = g(xi) + 1 3 �

3
w(−1, 1, 1) = −2 + |(−1 + 2− 3− 1)|

= 1
⇒ ẋi = g(xi) + 1 3 �

4
w(1,−1,−1) = −2 + |(1 − 2 + 3− 1)|

= −1
⇒ ẋi = g(xi)− 1 −3 �

5
w(1,−1, 1) = −2 + |(1− 2− 3− 1)|

= 3
⇒ ẋi = g(xi) + 3 5 �

6
w(1, 1,−1) = −2 + |(1 + 2 + 3− 1)|

= 3
⇒ ẋi = g(xi) + 3 5 �

7
w(1, 1, 1) = −2 + |(1 + 2− 3− 1)|

= −1 ⇒ ẋi = g(xi)− 1 −3 �

(17)

As always, the driving-point function g(xi) in
Eq. (17) is invariant for all Rules in Table 2, and is
given by Eq. (2).
Note that the color of the eight vertices in the

Boolean cube no. 110 in Table 1 is identical to that
predicted in Eq. (17), as expected.

4.2. There are Eight Attractors for
Each Local Rule

Our preceding in-depth analysis of the nonlinear dy-
namics of Eqs. (1) and (2) via Eq. (10) and Fig. 3
shows that there may be two attractors (e.g. upper

curve in Fig. 3 has 2 attractors and 1 repellor) in
the one-dimensional, xi-state space for each input
(ui−1, ui, ui+1); namely, one located at xi(Q+) > 0
and the other located at xi(Q−) < 0. Since there
are eight inputs corresponding to the eight vertices
of each Boolean cube in Table 1, it appears that
there may be 16 attractors for some local rules. This
observation is counter-intuitive because one would
expect that since there are eight vertices, one would
need only eight attractors for each local rule.
To resolve the above paradox, abserve that

our imposition of the initial condition xi(0) = 0
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Fig. 4. Dynamic routes for local Rule 110 . The five initial points w(1), w(2), w(3), w(5), and w(6) lying above the xi-
axis converge to Q+(1), Q+(2), Q+(3), Q+(5), and Q+(6) respectively, implying these five vertices must be coded in red.
The remaining three initial w(0), w(4), and w(7) lying below the xi-axis converge to attractors Q−(0), Q−(4), and Q−(7),
respectively, implying these three vertices must be coded in blue.

ensures that only one attractor is relevant for each
input.
It is sometimes convenient to interpret the three

input variables ui−1, ui, and ui+1 also as state vari-
ables by defining the following equivalent dynamical
system in R4:

ẋi = g(xi) + w(ui−1, ui, ui+1)

u̇i−1 = 0

u̇= 0

u̇i+1 = 0

(18)

Observe that Eqs. (1) and (18) have identical solu-
tions if we choose the following initial conditions:

xi(0) = 0

ui−1(0) ∈ {−1, 1}
(19)

ui(0) ∈ {−1, 1}
ui+1(0) ∈ {−1, 1}

The solutions of Eq. (18) consist of a continuum
of straight lines parallel to the xi-axis in the four-
dimensional Euclidean space R4, as depicted in
Fig. 5(a) for the special case of only two inputs ui
and ui+1, thereby allowing a geometrical visualiza-
tion in R3 with the xi-axis pointing outward from
the paper. We can interpret this geometrical struc-
ture as a special case of the truth table in Fig. 2
where ui−1 is fixed at ui−1 = 1 thereby reducing it
to only the last four rows corresponding to vertices
©4 ,©5 ,©6 and©7 , equivalent to the truth table of the
XOR operation between the two binary variables ui
and ui+1. In this reduced setting, all trajectories of
the dynamical system (18) are parallel straight lines
passing through every point (ui, ui+1) within any
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Fig. 5. (a) A three-dimensional state space with coordinates (xi, ui, ui+1). A square cross-section at xi = 0 is highlighted
with vertices corresponding to the front face of the Boolean cube in Table 1. Each parallel line is a trajectory with constant

ui and ui+1. (b) If we assume in ui−1 = 1 in Rule 110 , we can visualize four attractors Q+(6), Q+(5), Q−(4), and Q−(7)
whose xi-coordinate coincides with that from Fig. 4.
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square cross-section of a Boolean cube in Table 1,
as depicted in Fig. 5(a) at xi = 0. In other words,
the general solutions of Eq. (18) look like a bundle
of parallel fibers within an assumed square cross-
section at xi = 0.
However, since we are only interested in binary

cellular automata in this paper, we need to exam-
ine only the fibers through the four vertices ©4 , ©5 ,
©6 and ©7 . An inspection of the dynamic routes
through these four vertices in Fig. 4 leads to the
four attractors Q−(4), Q+(5), Q+(6), and Q−(7);
they are located along each respective fiber with an
xi-coordinate value equal to xi(4) = −3, xi(5) = 5,
xi(6) = 5, and xi(7) = −3, respectively, as shown
in Fig. 5(b). By our earlier color code, the two at-
tractors Q+(5) and Q+(6) would be coded in red,
whereas the other 2 attractors Q−(4) and Q−(7)
would be coded in blue. Observe that we now have

exactly 22 = 4 attractors when there are only two
inputs, and there will be 23 = 8 attractors when
there are three binary inputs ui−1, ui, and ui+1.
In general, we will have 2n attractors for n binary
inputs. For example, in a two-dimensional cellular
automata with eight nearest neighbors, such as the
Game of Life, we would have 29 = 512 attractors
corresponding to the 512 vertices of a Boolean cube
in a nine-dimensional Euclidean space.
In view of the above one-to-one correspondence

between the number of attractors of a dynamical
system representation of a local Rule, and the num-
ber of vertices of its associated Boolean cube, there
is no loss of generality for us to use the color at
each vertex of a Boolean cube to encode the fourth
coordinate xi of each attractor, as we have done in
the bottom portion of Fig. 5(b). In other words,
each Boolean cube in Table 1 now encodes the four

Fig. 6. Geometrical interpretation of the scalar projection σ(u)
∆
= bTu along the projection axis σ. Note that the length

σ(u) of the perpendicular projection of each vertex u = (ui−1, ui, ui+1) of the Boolean cube onto the projection axis (which
coincides with the orientation vector b) is equal to dividing σ(u) by ‖b‖2 = (b21 + b22 + b23).
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Table 3. Calculation of yi = sgn[w(σ)] for Rule 110 at vertex ©n with b =
[1 2 − 3]T .

binary coordinates (xi, ui−1, ui, ui+1), where xi is
assumed to be a binary variable after thresholding
via the output equation (7).

5. Every Local Rule has a Unique
Complexity Index

Theorem 2 from the preceding section, as well as
Table 2, provided a constructive proof that every
local rule can be generated by a dynamical sys-
tem whose attractors have a one-to-one correspon-
dence with the color of the vertices of a Boolean
cube which encodes the corresponding truth table
in Table 1. Perhaps the most surprising result from
Theorem 2 is the implication of Eq. (11), which as-
serts that each local Rule N depends only on the
single scalar projection variable σ defined in Eq. (3),

regardless of the number of inputs.11 Moreover,
since the sgn(•) function is determined by the sign
of w(σ), it follows that the binary output yi, or
equivalently, the color (red or blue) of each vertex
©n of each local rule depends entirely on the dis-
criminant function w(σ). The fact that this result
should hold for all local rules is hard to believe but
it is true! It follows that the key to characterize
the properties and complexity of a local Rule is to
analyze the structure of the discriminant w(σ) as a
function of σ.

5.1. Geometrical Interpretation of
Projection σ and Discriminant
w(σ)

Since u = (ui−1, ui, ui+1)T is simply a vector from
the origin (i.e. center of the Boolean cube) to one

11Since the proof of Theorem 2 never invokes in the individual inputs, but only on σ = bTu, it follows that Theorem 2 holds
for any number of inputs, including n = 9 in two-dimensional Cellular Automata with eight nearest neighbors.
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of the eight vertices of the cube, it follows that
σ = bTu = b1ui−1+ b2ui+ b3ui+1 is just the projec-
tion of u onto the orientation vector b, as depicted
in Fig. 6. To simplify our following geometrical
interpretation, it is convenient to examine the nor-
malized projection σ(u) obtained by dividing σ(u)
by ‖b‖2 = b21+b22+b23. Since ‖u‖ =

√
3 > 1, for any

vertex ©n , it follows that the normalized projection
σ stays inside the cube. In particular, we can cal-
culate the value of σ(u) with respect to each vertex
©n , n = 0, 1, 2, . . . , 7 and mark the value of this nor-
malized projection along the normalized orientation
axis σ defined by [b1/‖b‖2 b2/‖b‖2 b3/‖b‖2]T , as
shown in Fig. 7(a) for Rule 110 which we have just
analyzed in the preceding section. The calculated

values of σ(u) for Rule 110 are given in Table 3,
along with the value of the discriminant w(σ) corre-
sponding to each vertex ©n , n = 0, 1, 2, . . . , 7. Each
value of σ(u) is identified by a cross on the nor-
malized projection axis σ, whose distance from the
origin is equal to the calculated value in Table 3.
Observe that the position and direction of σ is de-
termined uniquely by the vector b = [b1 b2 b3]

T ,
which has been named the orientation vector to em-
phasize its important role in the partitioning of the
normalized projection axis σ. Observe also that
each cross on σ in Fig. 7(a) inherits the color of
its associated vertex.
Let us redraw the partitioned axis in the usual

horizontal position, as shown in Fig. 7(b), and
revert back to the original “unscaled” projection
axis σ.12

The final and crucial step of our analy-
sis consists of plotting the discriminant function
w(σ) = −2 + |σ − 1| for Rule 110, as shown in

Fig. 7(b). Observe that the resulting discriminant
curve w(σ) has separated the red projection crosses
from the blue projection crosses in such a way that
w(σ) > 0 for each σ associated with a red cross
(shown directly below vertex no. ©1 , ©5 , ©3 , ©2 and
©6 in Fig. 7(b)) and w(σ) < 0 at the remaining
crosses, namely the three blue crosses identified
with vertex ©0 , ©4 , and ©7 . The calculated values of
the discriminant for Rule 110 are given in Table 4.
An examination of Fig. 7(b) reveals the

presence of a zero-crossing, or transition point,
whenever a cross from a nearest-neighbor changes
sign. It follows that the selection of an appropriate
discriminant function having a desired set of transi-
tion points provides us with a simple algorithm for
synthesizing any local Rule from Table 2.

5.2. Geometrical Interpretation of
Transition Points of
Discriminant Function w(σ)

Since σ
∆
= b1ui−1 + b2ui + b3ui+1, each transition

point σ = σk that satisfies w(σk) = 0 (σ1 = −1 and
σ2 = 3 in Fig. 7(b)) defines a two-dimensional plane

b1ui−1 + b2ui + b3ui+1 = σk (20)

in the three-dimensional (ui−1, ui, ui+1) input space,
henceforth called a separation plane. For exam-
ple, the two separation planes associated with the
two transition points σ1 = −1 and σ2 = 3 for
Rule 110 with respect to the discriminant func-
tion w(σ) = −2 + |σ − 1| shown in Fig. 7(b) are as
follow:

Equation of Separation plane Equation of Separation plane
through Transition point through Transition point

σ = σ1 = −1 : σ = σ2 = 3 :

ui−1 + 2ui − 3ui+1 = −1 ui−1 + 2ui − 3ui+1 = 3
(21)

These two separation planes are sketched in Fig. 8
and identified by light blue and yellow colors, re-
spectively. We have superimposed on top of these
two pictures also the unscaled orientation vector
σ(u) = ui−1 + 2ui − 3ui+1 to show that the yel-

low separation plane is 3 units above the origin
along the positive direction of the projection axis
σ (northwest direction in this case) and that the
light blue separation plane is 1 unit below the ori-
gin. It is clear from Fig. 8 and Eq. (21) that the

12Note that the unscaled projection σ should always be used in any computation or design involving the discriminant w(σ).
The normalized projection σ is used in Fig. 7(a) to allow visualization on approximately the same scale as u. To avoid
cumbersome notations, we will sometimes use the scalar σ(u) to denote the vector σ(u)[b/(b •b)], as in Fig. 8.



A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part I 2739

Fig. 7. (a) Projection of each vertex onto the normalized σ-axis defined by b = [1 2 −3]T . Each projection σ(n) obtained
from Table 3 is marked by a cross bearing the same color as its associated vertex ©n . Note that vertices ©0 and ©7 both project
into the origin. This “double” cross is depicted in (b) by a larger cross. (b) Actual projection σ = bTu of each vertex redrawn
with separating curve w(σ) shows two transition points, thereby requiring two parallel separating planes.
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Table 4. Calculation of the discriminant w(σ) = −2+ |(uu−1+2ui−3ui+1)−1|
at vertex ©n .

two separation planes are not only parallel to each
other, but they are also perpendicular to the orien-
tation vector b = [1 2 − 3]T . The orthogonality
relationship between a separation plane defined by
bTu = σk and its associated orientation vector b is
also obvious if one views σ as one coordinate axis
of a rotated coordinate system through the origin
so that σ = σk is, by definition of a coordinate axis,
the plane perpendicular to the σ-axis at the point
σ = σk.
A careful inspection of Fig. 8 reveals the raison

etre for introducing the abstract concept of sepa-
ration planes;13 namely, they separate the vertices
into clusters of the same color.

5.3. Geometrical Structure of
Local Rules

The colored vertex separating ability of the sep-
aration planes is a truly fundamental geometric

property of the Euclidean Space, independent of the
choice of the basis function used to describe the dis-
criminant function w(σ), so long as w(σ) has the
same transition points. For example, we could have
chosen

w(σ) = (σ − 3)(σ − 1) = σ2 − 4σ + 3 (22)

and substituted it into Eq. (1) to obtain another
dynamical system

Alternate
State
Equation
for
Rule 110

ẋi = g(xi) + (ui−1 + 2ui

−3ui+1)2 − 4(ui−1
+2ui − 3ui+1) + 3 (23)

that would generate exactly the same local Rule;
namely, Rule 110 in this case. Indeed, instead of
using absolute-value functions in Table 2, we could

13The concepts of transition points and separation planes were first introduced in [Dogaru & Chua, 1999].
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Fig. 8. Projection axis σ(u) coincides with the orientation vector b = [1 2 − 3]T drawn through the center “0” of the
Boolean cube. It is orthogonal (i.e. intersects perpendicularly) to the two parallel planes.

have opted for polynomials. However, all rules in
Table 2 with κ = 3 (integer in the upper right hand
corner) would now require a third degree polyno-
mial which would eat up significantly more space.
In a precise sense to be articulated below, every

local Rule has a characteristic structure which can
be identified by its separation planes. To stress the
fundamental role played by the choice of separa-
tion planes in this local Rule structural identifica-
tion process, we have extracted only the relevant
parts of Fig. 8 and redrawn it in Fig. 9.

5.4. A Local Rule with
Three Separation Planes

Some local Rules cannot be characterized by only
two separation planes because it may not be possi-
ble to separate the eight vertices neatly into three
colored groups and at the same time separate them
by two parallel planes, no matter how we posi-
tion the planes, or equivalently, no matter how we
pick the orientation vector b (recall the separation
planes are perpendicular to the orientation vector).
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Fig. 9. Geometric structure of Rule 110.

However, it is always possible to choose a suffi-
ciently large number of parallel planes to separate
the vertices by simply projecting them onto a pro-
jection axis corresponding to almost14 every orien-
tation vector b. By scanning the sequence of red
and blue crosses on the σ-axis, as in Fig. 7, we can
always choose a sufficiently large number of tran-
sition points that would separate any number of
groups of red crosses from neighboring groups of
blue crosses. Once again, the key to this remark-
ably easy task is the one-dimensional character of
the projection σ.

An example of a local Rule which cannot be
separated by only two parallel planes is Rule 150 .
Suppose we pick the orientation vector, say b =
[−4 − 2 1]T and determine the corresponding
projection axis σ(u) = −4ui−1−2ui+ui+1 (pointing
in a South-Eastern direction). Using the calculated
data given in Table 5, we sketch the crosses along
the normalized projection axis σ in Fig. 10(a). The
redrawn unscaled version shown in Fig. 10(b) shows
that we need five transition points to separate the
crosses; namely, σ1 = −6, σ2 = −2, σ3 = 0, σ4 = 2,

14The only exception is when two vertices having different colors happen to project onto the same point on the σ-axis. This
is a pathological situation that rarely occurs [Dogaru & Chua, 1999].
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Table 5. Calculation of yi = sgn[w(σ)] for Rule 150 at vertex ©n with b =
[−4 − 2 1]T .

and σ5 = 6. A discriminant function w(σ) having
these five zero crossings is shown in Fig. 10(b). This
function is given on top of Fig. 10(b). It follows
that a dynamical system for generating the local

Rule 150 is as follows:

ẋi = g(xi) + (−4ui−1 − 2ui + ui+1)
− |(−4ui−1 − 2ui + ui+1 + 4)|
+ |(−4ui−1 − 2ui + ui+1 + 1)|
− |(−4ui−1 − 2ui + ui+1 − 1)|
+ |(−4ui−1 − 2ui + ui+1 − 4)| (24)

Another dynamical system which yields the same
local Rule in terms of a polynomial discriminant
function w(σ) = σ(σ+6)(σ+2)(σ−2)(σ−6) would
lead to an even messier state equation involving a
third degree polynomial of three variables ui−1, ui,
and ui+1.
Actually we can do even better by choosing an-

other orientation vector; namely b = [−4 − 2
4]T . Repeating the exercise with this orientation

vector leads to the simpler discriminant function
(see Table 6 for the calculated data): w(σ) =
σ − |σ + 4| + |σ − 4| involving only three turning
points (see Figs. 11 and 12). The corresponding
state equation is given by:

ẋi = g(xi) + (−4ui−1 − 2ui + 4ui+1)
− |(−4ui−1 − 2ui + 4ui+1 + 4)|
+ |(−4ui−1 − 2ui + 4ui+1 − 4)| (25)

which is considerably simpler than Eq. (24).
In fact, by resorting to a composite structure

of nested absolute value functions, it is always pos-
sible to transform Eq. (25) into the most compact
form given in Eq. (5), namely,

State
Equation
for
Rule 150

ẋi = g(xi) + {3− |[7− | − 3
+(−4ui−1 − 2ui
+4ui+1)|]|}
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Fig. 10. (a) Projection of each vertex onto the normalized σ-axis defined by b = [−4 − 2 1]T . (b) Actual projection
σ = bTu of each vertex redrawn with separating curve w(σ) shows five transition points, thereby requiring five parallel
separating planes.
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Fig. 11. (a) Projection of each vertex onto the normalized σ-axis defined by b = [−4 − 2 4]T . (b) Actual projection
σ = bTu of each vertex redrawn with separating curve w(σ) shows three transition points, thereby requiring only three
parallel separating planes.
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Fig. 12. Geometric structure of Rule 150.
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Table 6. Calculation of yi = sgn[w(σ)] for Rule 150 at vertex
©n with b = [−4 − 2 4]T .

Table 7. Calculation of yi = sgn[w(σ)] for Rule 232 at vertex
©n with b = [1 1 1]T .
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Fig. 13. (a) Projection of each vertex onto the normalized σ-axis defined by b = [1 1 1]T . (b) Actual projection σ = bTu
of each vertex redrawn with separating curve w(σ) shows only one transition point, thereby requiring only one separating
plane located at σ = 0, perpendicular to the orientation vector b = [1 1 1]T in (a).
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Fig. 14. Geometric structure of Rule 232.

It is this compact dynamical system which is listed

in Table 2 for Rule 150 .

5.5. Linearly Separable Rules

The colored vertices of many local Rules can be

separated by only one plane. We will present two
typical examples in the subsection.

Example 1. Rule 232

Using the orientation vector b = [1 1 1]T and the
data calculated for Rule 232 in Table 7, we obtain
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Table 8. Calculation of yi = sgn[w(σ)] for Rule 250 at vertex ©n with b =
[1 0 1]T .

the projections shown in Fig. 13. Since there is only
one transition point, the colored vertices of Rule 232
can be separated by only one plane, as shown in
Fig. 14.

Example 2. Rule 250

Using the orientation vector b = [1 0 1]T and the
data calculated for Rule 250 in Table 8, we obtain
the projections shown in Fig. 15. Once again, there
is only one transition point and hence the colored
vertices of Rule 250 can also be separated by only
one plane, as shown in Fig. 16.
Any local Rule whose colored vertices can be

separated by only one plane is said to be linearly
separable because its associated discriminant func-
tion w(σ) is a straight line. A careful examination
of the 256 Boolean cubes in Table 1 shows that 104
among them are linearly separable. These are the

local Rules whose Rule number N is printed in Red.
The remaining 152 Rule numbers which are printed
in blue are not locally separable.

In addition to Rule 110 and Rule 150 pre-
sented earlier, a sample of five other Linearly-Non-
Separable Rules cited in [Wolfram, 2002], among
many others, are shown in Figs. 17–21; namely,

Rule 20 , Rule 22 , Rule 30 , Rule 90 , and

Rule 108 .
For future reference, all 104 Linearly Separable

Rules and all 152 Linearly-Non-Separable Rules are
listed in Tables 9 and 10, respectively.

5.6. Complexity Index

By applying the projection technique illustrated in
the preceding sections, it is clear that the colored
vertices of every Boolean cube in Table 1 can be
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Fig. 15. (a) Projection of each vertex onto the normalized σ-axis defined by b = [1 0 1]T . (b) Actual projection σ = bTu
of each vertex redrawn with separating curve w(σ) shows only one transition point, thereby requiring only one separating
plane located at σ = −1, perpendicular to the orientation vector b = [1 0 1]T in (a).
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Fig. 16. Geometric structure of Rule 250.

Fig. 17. Geometric structure of Rule 20.
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Fig. 18. Geometric structure of Rule 22.

Fig. 19. Geometric structure of Rule 30.
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Fig. 20. Geometric structure of Rule 90.

Fig. 21. Geometric structure of Rule 108.
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Table 9. List of 104 Linearly Separable Boolean Function Rules.

Table 10. List of 152 Linearly Non-Separable Boolean Function Rules.
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Table 11. Complexity Index κ of Local Rules.

separated by a finite number of parallel planes. In
general, each local rule can be separated by various
numbers of parallel planes, each one giving rise to
a different state equation which codes for the same
Rule. In other words, many distinct dynamical sys-
tems can be used to code for any local Rule listed
in Table 1. The 256 dynamical systems listed in
Table 2 represent only one choice with a compact
formula.
However, there is a unique integer κ, henceforth

called the complexity index of a local Rule, which
characterizes the geometrical structure of the corre-
sponding Boolean cube, namely the minimum num-
ber of parallel planes that is necessary to separate
the colored vertices. Hence, all linearly separable
Rules have a complexity index of κ = 1. A careful
analysis of Table 1 shows that each of the remain-
ing 152 Linearly Non-Separable Rules has a com-
plexity index of either 2 or 3 (see Table 11). For
example, Rule 110 has a complexity index of κ = 2
whereas Rule 150 has a complexity of index κ = 3.
The complexity index κ of each local Rule is printed
in the upper right-hand corner of each quadrant of
Table 2.

5.7. Every Local Rule is a Member
of an Equivalence Class

Two local Rules N1 and N2 are said to be equiv-
alent iff there exists a transformation which maps

Rule N1 onto Rule N2, and vice versa. The follow-
ing are two useful symmetry transformations:

1. Red↔Blue complementary
transformation

The complement of a local Rule N1 is a local
Rule N2 where the colors of corresponding ver-
tices of corresponding Boolean cubes from Table 1
are complement of each other i.e. corresponding red
vertices become blue, and vice versa. Since the dy-
namics of Local Rule N1 can be predicted from that
of Local Rule N2 and vice-versa, we say Rules N1
and N2 form a “Red ↔ Blue complementary pair”.
Clearly, half of the Local Rules form “Red ↔ Blue
complementary pairs” with the other half. Table 12
gives the Red ↔ Blue complementary pair of all
Local Rules from N∗ = 128 to N∗ = 255.

2. Left↔Right symmetrical
transformation

The Left ↔ Right symmetrical transformation of a
local Rule N1 is a local Rule N2 obtained by inter-
changing the colors between vertices ©3 and ©6 , as
well as between vertices ©1. and ©4 in the Boolean
cube N1 from Table 1. Since the left and right
neighbors of each cell belonging to a left–right sym-
metrical pair in Table 2 will move in opposite but
laterally symmetric directions, we can predict the
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Table 12. List of 128 Red ↔ Blue complementary pairs of Boolean Function Rules.

motion of one local Rule from the motion of its left–
right symmetric pair, and vice versa. For example,
Rules 110 and 124 form a left–right symmetrical
pair because the color (blue) of vertex ©4 in the
Boolean cube 110 in Table 1 becomes the color of

vertex ©1 of Boolean cube 124, and the color (red)
of vertex ©1 becomes the color of vertex ©4 . The
color of all other vertices are identical. Note that in
this case, the colors of vertices©3 and©6 remain un-
changed because they are identical (both are red) so
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Table 13. List of 96 left ↔ right symmetrical pairs of Boolean Function
Rules.

that interchanging them leads to the same pattern.
Observe next that the local Rule 150 is invariant
under a left↔ right symmetrical transformation be-
cause vertices ©1 and ©4 have identical colors (both
are red); similarly, vertices©3 and©6 also have iden-
tical colors (both are blue). Table 13 gives the com-
plete list of 96 distinct left ↔ right symmetrical
pairs.
Combining Tables 12 and 13, we obtain

Table 14 which lists the complete set of equivalent
classes of all local Rules from Table 1. The shaded

entries in this table correspond to those local Rules
that remain invariant under a left–right symmetri-
cal transformation, such as Rule 150.
Since all members belonging to the same equiv-

alent class of local Rules have identical complexity
indices, and exhibit dynamic behaviors that can be
predicted from each other, it suffices to undertake
an in-depth analysis of only one member from each
equivalent class. Using Tables 9, 10 and 14, we have
identified 33 independent Linearly Separable local
Rules (see Table 15) and 47 independent Linearly
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Table 14. Equivalent Classes of Boolean Function Rules.
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Table 14. (Continued)
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Fig. 22.
.

Fig. 23.
.

Non-Separable local Rules. All together, it suffices
to conduct an in-depth research on the nonlinear
dynamics and “global” complexity of only 80 in-
dependent local Boolean Function of three binary
variables.

5.8. Making Non-Separable from
Separable Rules

Linearly Separable local Rules have a complexity
index κ = 1, by definition. These are the simplest
building blocks in the universe of Boolean cubes,
of any dimension. They are also the simplest to
implement on a chip.15 In terms of their nonlin-
ear dynamics, Linearly Separable Rules are also the

fastest to execute on a chip; namely, a few nanosec-
onds via current silicon technology, and at the speed
of light via current optical technology. Moreover,
the speed of the associated Cellular Automata is
independent of the size of the array — it takes
the same amount of time to run a two-dimensional
Linearly Separable Rule on a 10× 10 array, or on a
106×106 array of Cellular Automata when executed
on a CNN chip.
It is proved in [Chua & Roska, 2002] that ev-

ery one or two-dimensional Linearly Non-Separable
Boolean Rule can be implemented by combining
only a finite number of Linearly Separable Rules
via standard logic operations (AND, OR, and XOR)
on each pixel of a CNN.16 As the simplest special

15All 104 local Rules are implemented on the CNN universal chip directly on hardware, i.e. without programming [Chua &
Roska, 2002].
16Every one of the 22

9

= 2512 ≈ 10154 distinct two-dimensional local Boolean Rules with nine inputs can be implemented
directly on current CNN universal chips by programming via a C-like user-friendly language [Chua & Roska, 2002].
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Fig. 24.
.

Fig. 25.
.

case of this fundamental decomposition theorem,
Table 17 gives the explicit decomposition of all 152
Linearly Non-Separable local Rules from Table 10 in
terms of at most three Linearly Separable Rules and
combining them pixelwise only via AND and OR
logic operations. An inspection of this table shows
that in fact with the exception of Rule 105 and

Rule 150 , which require three Linearly Separable
building blocks, all others need only two. In this
sense, one could rank Rule 105 and Rule 150 as
the most complicated one-dimensional Cellular Au-
tomata cells to implement on a chip [Dogaru &
Chua, 1998].
The reader can easily verify the decompositions

in Table 17 by performing the prescribed logic op-
eration directly on corresponding vertices of the

relevant Boolean cubes extracted from Table 1.
Four examples of such decompositions are shown in

Figs. 22–25 for Rule 110 (involving only one AND

operation), Rule 107 (involving only one OR oper-

ation), and Rule 105 and Rule 150 (both involving
one AND and one OR operations).

5.9. Index 2 is the Threshold of
Complexity

By inspection of the patterns generated in Ta-
ble 2 for the 33 Linearly Separable Rules listed in
Table 15, and by invoking, the “equivalence class”
classification in Table 14, we find that no local Rule
with complexity index κ = 1 is capable of gen-
erating complex patterns, even for random initial
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conditions. It is clear therefore that in order to
exhibit emergence and complex phenomena, such as
those presented in [Chua, 1998],17 a local Rule must
have a minimum complexity index of κ = 2. In
other words, borrowing the name from Wolfram, we
can assert that complexity index 2 is the threshold of
complexity for one-dimensional Cellular Automata.
This analytically-based assertion is certainly con-
sistent with the following empirically-based obser-
vation extracted from pages 105–106 of [Wolfram,
2002]:

The examples in this chapter suggest
that if the rules for a particular system
are sufficiently simple, then the system
will only ever exhibit purely repetitive
behavior. If the rules are slightly more
complicated, then nesting will also often
appear. But to get complexity in the
overall behavior of a system one needs
to go beyond some threshold in the com-
plexity of its underlying rules.
The remarkable discovery that we

have made, however, is that this thresh-
old is typically extremely low. And in-
deed in the course of this chapter we
have seen that in every single one of the
general kinds of systems that we have
discussed, it ultimately takes only very
simple rules to produce behavior of great
complexity.
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