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By exploiting the new concepts of CA characteristic functions and their associated attractor
time-τ maps, a complete characterization of the long-term time-asymptotic behaviors of all 256
one-dimensional CA rules are achieved via a single “probing” random input signal. In particular,
the graphs of the time-1 maps of the 256 CA rules represent, in some sense, the generalized Green’s
functions for Cellular Automata. The asymptotic dynamical evolution on any CA attractor,
or invariant orbit, of 206 (out of 256) CA rules can be predicted precisely, by inspection. In
particular, a total of 112 CA rules are shown to obey a generalized Bernoulli στ -shift rule,
which involves the shifting of any binary string on an attractor, or invariant orbit, either to
the left, or to the right, by up to 3 pixels, and followed possibly by a complementation of the
resulting bit string.

The most intriguing result reported in this paper is the discovery that the four Turing-universal
rules 110 , 124 , 137 , and 193 , and only these rules, exhibit a 1/f power spectrum.

Keywords : Cellular neural networks; CNN; cellular automata; Turing machine; universal com-
putation; Green’s function; Bernoulli shift; 1/f power spectrum; global equivalence classes; CA
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1. Introduction

The basic notations and concepts underlying this
tutorial stem from [Chua, 1998; Chua & Roska,
2002] and from Part I [Chua et al., 2002], Part II
[Chua et al., 2003], and Part III [Chua et al., 2004].
Throughout this paper we are concerned exclusively
with 2-state one-dimensional cellular automata con-
sisting of I + 1 cells, i = 0, 1, 2, . . . , I with periodic
boundary conditions, as depicted in Fig. 1(a). Each
cell i interacts only with its nearest neighbors i− 1
and i + 1, as depicted in Fig. 1(b). Here ui−1, ui and
ui+1 denote the three inputs needed to compute the
single output yi by a three-input nonlinear function

yi = N(ui−1, ui, ui+1) (1)

Boolean computations by this function are executed
according to the truth table depicted in Fig. 1(c).

Each of the eight binary bits β0, β1, . . . , β7 in the
rightmost column of this figure is equal to either
0 or 1. There are 256 distinct combinations of
“zeros” and “ones” among the eight binary bits
β0, β1, . . . , β7, each one defining a unique Boolean
function of three binary variables. One-to-one cor-
respondence of each of these 256 Boolean functions
with its associated decimal number

N =
7∑

k=0

βk2k (2)

determines a local rule N of the cellular automa-
ton. Each coefficient β0, β1, . . . , β7 is uniquely
identified, via its coordinates (ui−1, ui, ui+1) from
Fig. 1(d) as a vertex of the Boolean cube shown in
Fig. 1(e). A vertex k© is colored in blue if βk = 0 and
in red if βk = 1. For example, the colored vertices in
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Fig. 1. (a) A one-dimensional Cellular Automata (CA) made of (I + 1) identical cells with a periodic boundary condition.
Each cell “i” is coupled only to its left neighbor cell (i − 1) and right neighbor cell (i + 1). (b) Each cell “i” is described by a
local rule N , where N is a decimal number specified by a binary string {β0, β1, . . . , β7}, βi ∈ {0, 1}. (c) The symbolic truth
table specifying each local rule N , N = 0, 1, 2, . . . , 255. (d) By recoding “0” to “−1”, each row of the symbolic truth table
in (c) can be recast into a numeric truth table, where γk ∈ {−1, 1}. (e) Each row of the numeric truth table in (d) can be
represented as a vertex of a Boolean Cube whose color is red if γk = 1, and blue if γk = −1.
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Fig. 1(e) correspond to the local rule

N = 0 • 20 + 1 • 21 + 1 • 22 + 1 • 23 + 0 • 24

+ 1 • 25 + 1 • 26 + 0 • 27 = 110. (3)

Depending on the context, each variable ui−1, ui,
ui+1, or yi may assume a symbolic Boolean value
“0” or “1”, as depicted in Fig. 1(c), or a numeric
value, “−1” or “+1”, as depicted in Fig. 1(d). The
symbolic and numeric representations are related to
each other as follows1:

numeric variable = 2 • Boolean variable − 1
(4)

Boolean variable =
1
2

(
numeric variable + 1

)
(5)

In particular, the real variables γ0, γ1, . . . , γ7

in Fig. 1(d) are related to the Boolean variables
β0, β1, . . . , β7 in Fig. 1(c) via the formula

γk = 2βk − 1 (6)

Substituting Eq. (6) into Eq. (2), we obtain the fol-
lowing equivalent local rule number

N =
1
2

(
255 +

7∑
k=0

γk2k

)
(7)

1.1. Computing all 256 rules from
one CA difference equation

The cellular automaton evolves in discrete time
steps t = 0, 1, 2, . . . . The output of the ith cell (in
numeric representation) can be calculated analyti-
cally from the following nonlinear difference equa-
tion [Chua et al., 2004] involving eight parameters:

CA Difference Equation 1 : ut
i ∈ {−1, 1}

ut+1
i = sgn{z2 + c2|(z1 + c1|(z0 + b1u

t
i−1

+ b2u
t
i + b3u

t
i+1)|)|}

(8)

It is indeed remarkable that one equation suffices
to define all 28 = 256 Boolean functions of three
variables ui−1, ui, and ui+1 by simply specify-
ing eight real numbers. Even more remarkable is
that the CA Difference equation (8) is robust in
the sense that the eight parameter values defining
each local rule N form a dense set. One set of
parameters {z2, c2, z1, c1, z0, b1, b2, b3} for realizing

each one of the 256 local rules is listed in Table 4
of Part II [Chua et al., 2003]. The eight parame-
ters {z2, c2, z1, c1, z0, b1, b2, b3} in this equation can
be used to derive the coefficients βk in Fig. 1(c),
k = 0, 1, . . . , 7 via the formula:

βk =
1
2
(1 + sgn{z2 + c2|(z1 + c1|(z0 + b1uk,i−1

+ b2uk,i + b3uk,i+1)|)|}) (9)

where the numeric coefficients uk,i−1, uk,i and uk,i+1

are given by row k of the truth table in Fig. 1(d).
The state variables ut

i−1, ut
i, and ut

i+1 in Eq. (8)
must be expressed in numeric values −1 and +1.

Since this paper (Part IV) will be devoted
exclusively to Boolean variables xi ∈ {0, 1}, it is
more convenient to express Eq. (8) in terms of xi

via Eq. (4); namely,

CA Difference Equation 2 : xt
i ∈ {0, 1}

xt+1
i =

1
2
(1 + sgn{z′2 + c2|(z′1 + c1|(z′0 + b1x

t
i−1

+ b2x
t
i + b3x

t
i+1)|)|})

where z′0 � 1
2
[z0 − (b1 + b2 + b3)], z′1 � 1

2
z1,

z′2 � 1
2
z2

(10)

2. Mapping Local Rules onto Global
Characteristic Functions

Given any local rule N , N = 0, 1, 2, . . . , 255,
and any binary initial configuration (or initial state
when used in the context of nonlinear dynamics)

→x(0) = [x0(0), x1(0), · · · , xI−1(0), xI (0)] (11)

for a one-dimensional Cellular Automaton with I+1
cells [see Fig. 1(a)], where xi(0) ∈ {0, 1}, we can
associate uniquely the Boolean string →x(0) with
the binary expansion (in base 2) of a real num-
ber 0 • x0x1 · · · xI−1xI on the unit interval [0, 1];
namely,

→x � [x0x1 · · · xI−1xI ]

�→ φ � 0 • x0x1 · · · xI−1xI (12)

1The Boolean variable is considered as a real number in Eqs. (4) and (5), or in any equation involving real-variable (i.e. nonlogic)
operations.
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where the decimal equivalent of Eq. (12) is given by

φ =
I∑

i=0

2−(i+1)xi (13)

We will often need to consider also the bilateral
image
←x(0)= [xI(0), xI−1(0), . . . , x1(0), x0(0)] = T†(�x(0))

(14)

henceforth called the backward Boolean string asso-
ciated with the forward Boolean string →x from
Eq. (12), where T† is the (I + 1)-dimensional left–
right transformation operator defined in Table 13 of
[Chua et al., 2004], namely,

T†[x0x1 · · · xI−1xI ] = [xIxI−1 · · · x1x0] (15)

Each backward Boolean string ←x in Eq. (14) maps
into the real number φ† defined by

←x �→ φ† � 0 • xIxI−1 · · · x1x0 (16)

where the decimal equivalent of Eq. (16) is given by

φ† =
I∑

i=0

2−(I+1)+ixi (17)

where
←x � [xIxI−1 · · · x1x0]

2.1. CA characteristic functions

For a one-dimensional CA with I +1 cells, there are
n

Σ

∆= 2I′ distinct Boolean strings, where I ′ ∆= I + 1.
Let Σ denote the state space made of the collection
of all nΣ Boolean strings. Each local rule N induces
a global map

TN : Σ → Σ (18)

where each state x ∈ Σ is mapped into exactly one
state TN (x) ∈ Σ. Since each state x ∈ Σ corre-
sponds to one, and only one, point φ ∈ [0, 1] via
Eq. (13), it follows that the global map (18) induces
an equivalent map χN from the set of all ratio-
nal numbers R[0, 1] over the unit interval [0, 1] into
itself; namely,

χN : R[0, 1] → R[0, 1] (19)

Fig. 2. A commutative diagram establishing a one-to-one
correspondence between TN and χ N .

henceforth called the CA characteristic function of
N . The one-to-one correspondence between the
global map TN and the CA characteristic function
χN is depicted in the diagram shown in Fig. 2,
where Φ denotes the transformation of the state →x
into the decimal function defined in Eq. (13). This
diagram is said to be commutative because

Φ ◦ TN = χN ◦ Φ (20)

where “◦” denotes the composition operation.
Observe that in the limit where I → ∞, the

state space Σ coincides with the collection of all
bi-infinite strings extending from −∞ to ∞, and

lim
I→∞

R[0, 1] = [0, 1] (21)

In this general case, the CA characteristic func-
tion χN is defined on every point (i.e. real number)
φ ∈ [0, 1], thereby including all irrational numbers
as well [Niven, 1967].

2.2. Algorithm for plotting the graph of
CA characteristic functions

Since the domain of the CA characteristic function
χN of any local rule N (for finite I) consists of a
subset of rational numbers in the unit interval [0, 1],
a computer program for constructing the graph of
the characteristic function χN can be easily written
as follow:

Step 1. Divide the unit interval [0, 1] into a finite
number of uniformly-spaced points, called a linear
grid, of width ∆φ. For the examples in Sec. 2.3, we
choose ∆φ = 0.005.

Step 2. For each grid point φj ∈ [0, 1], identify
the corresponding binary string sj ∈ Σ.

Step 3. Determine the image s′j ∈ Σ of sj under
N , i.e. find s′j = TN (sj) via the truth table of N .
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Step 4. Calculate the decimal equivalent of s′j via
Eq. (13).

Step 5. Plot a vertical line through the abscissa
φN = φj with height equal to s′j .

Step 6. Repeat steps 1–5 over all (1/∆φ) + 1
grid points. For the examples in Sec. 2.3, there are
(1/0.005) + 1 = 201 grid points.

For reasons that will be clear later, it is some-
times more revealing to plot the τth iterated
value

sτ
j = T τ

N (sj) � TN ◦ TN ◦ · · · TN︸ ︷︷ ︸
τ times

(sj) (22)

of sj , instead of TN (sj), at each grid point φj ∈
[0, 1]. For obvious reasons, such a function is
called a time-τ CA characteristic function and
will henceforth be denoted by χτ

N
. Using this

terminology, the algorithm presented above can be
used to plot the graph of the “time-1” CA charac-
teristic function χ1

N
of any local rule N . The same

algorithm applies mutatis mutandis, for plotting
the graph of the time-τ characteristic function χτ

N

as well.
To enhance readability, it is desirable to plot

the M
∆= (1/∆φ)+1 vertical lines of χτ

N
in alternat-

ing red and blue colors, henceforth referred to as red
and blue φ-coordinates φred and φblue, respectively.
The “tip” of each vertical line gives the value of χτ

N

corresponding to each φ coordinate. The system
of red and blue lines is defined via the following
simple algorithm.

For any I, partition all (I+1)-bit binary strings
into a red group and a blue group. All members of
the red group have a “0” as their rightmost bit.
The blue group then consists of all (I +1)-bit binary
strings with a “1” as their rightmost bit. Each group
has therefore exactly one half of the total number
(M = 2I+1) of distinct strings, namely, 2I .

Since the end (rightmost) bit of each φblue ∈
[0, 1] is equal to a “1”, by construction, it follows
that the largest value of φblue is greater than the
largest value of φred by exactly 1/2I+1. This means
that the rightmost vertical line must have color blue,
and tends to φ = 1 as I → ∞. The rightmost blue
line is, for plotting purpose, drawn through φ = 1.
We can then divide the interval [0, 1] into (1/∆φ)+1
grid points, where ∆φ is the prescribed resolution.
All characteristic functions in Figs. 3–7 are drawn
with ∆φ = 0.005, where a tiny red or blue square is
drawn around the tip of each vertical line for ease of

identification. In other words, the distance between
each red line and its adjacent blue line is equal to
0.005.

Although higher precision can be easily imple-
mented by a computer, the limited printer resolu-
tion will cause adjacent red and blue lines to merge
through ink diffusion for ∆φ < 0.005.

To construct Figs. 3–7, we chose ∆φ = 0.005,
φstart = 0• 00 · · · 00︸ ︷︷ ︸

65 ′′0′′s
1, and φend = 0• 11 · · · 11︸ ︷︷ ︸

65 ′′1′′s
1.

Our choice leads to exactly 100 red vertical
lines (located at 0.005, 0.015, 0.025, . . . , 0.995,
∆red = 0.01) with binary base-2 expansion φred =
0 • β1β2β3 · · · β650, βi ∈ {0, 1}, which interleave
with 101 blue vertical lines (located at 0.000, 0.01,
0.02, . . . , 1.00, ∆blue = 0.01) with binary base-2
expansion φblue = 0 • β′

1β
′
2β

′
3 · · · β′

651, β′
i ∈ {0, 1}.

The 201 red and blue lines shown in the char-
acteristic functions in Figs. 3–7 represent only their
approximate positions on [0, 1] because the resolu-
tion of their exact positions is determined by the
value of I, which is chosen to be 65 in Figs. 3–7. This
means that our state space Σ is “coarse grain” and
contains only 266 distinct 66-bit binary strings, each
one representing a unique rational number on [0, 1],
of which only 201 are actually drawn in these figures
to avoid clutter. Since an arbitrary rational num-
ber on [0, 1] requires an arbitrarily large (though
finite) value of I for an exact base-2 expansion (i.e.
I → ∞ in Eq. (13)), a fine grain characteristic func-
tion χτ

N
which includes all possible rational num-

bers φ ∈ [0, 1] in its domain would be impractical
to plot on paper, or even store on any computer
memory. However, the characteristic functions (cal-
culated with I = 65) shown in Figs. 3 to 7 are ade-
quate for most purposes. Increasing the value of I is
equivalent to “sandwiching” more vertical lines in
between the existing lines drawn in these figures.

2.3. A glimpse of some time-τ
characteristic functions χτ

N

Let us take a glance at some representative exam-
ples of CA characteristic functions. For brevity, we
will henceforth refer to “time-1” CA characteristic
functions simply as “characteristic functions”.

Example 1. χ1
128

The graph of the characteristic function χ1
128

of
128 is shown in Fig. 3(a). This is among the
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(a)

(b)

Fig. 3. Time-1 CA characteristic functions χ1
128

and χ1
200

for local rules 128 and 200 , respectively. Although only 201

points (enclosed by tiny squares) are shown, the abscissa (φ coordinate) of each point is calculated with a 66-bit string
resolution.
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(a)

(b)

Fig. 4. Time-1 CA characteristic functions χ1
170

and χ1
240

for local rules 170 and 240 , respectively. Although only 201

points (enclosed by tiny squares) are shown, the abscissa (φ coordinate) of each point is calculated with a 66-bit string
resolution.
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(a)

(b)

Fig. 5. Time-1 CA characteristic functions χ1
30

and χ1
110

for local rules 30 and 110 , respectively. Although only 201

points (enclosed by tiny squares) are shown, the abscissa (φ coordinate) of each point is calculated with a 66-bit string
resolution.



May 15, 2005 14:51 01299

A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part IV 1053

(a)

(b)

Fig. 6. Time-1 CA characteristic functions χ1
51

and time-2 CA characteristic function χ2
51

for local rule 51 . Although

only 201 points (enclosed by tiny squares) are shown, the abscissa (φ coordinate) of each point is calculated with a 66-bit
string resolution.
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(a)

(b)

Fig. 7. Time-1 CA characteristic functions χ1
62

and time-3 CA characteristic function χ3
62

for local rule 62 . Although

only 201 points (enclosed by tiny squares) are shown, the abscissa (φ coordinate) of each point is calculated with a 66-bit
string resolution.
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simplest characteristic functions. Observe that no
vertical lines intersect the unit-slope main diagonal
except at φ 128 = 0•00 and φ 128 = 1•00 (where the
bar over a sequence of binary bits denotes repeti-
tion of these bits ad infinitum). These two period-1
fixed points give rise to a homogeneous “0” dynamic
pattern D 128 [0•00] (homogeneous blue color) in the
former, and a homogeneous “1” dynamic pattern
D 128 [1•00] (homogeneous red color) in the latter.
The qualitative dynamics of these two orbits, how-
ever, are dramatically different. The orbit from
D 128 [0•00] is an attractor in the sense of nonlin-
ear dynamics [Alligood et al., 1996] because it has
a nonempty basin of attraction BΛ, which in this
case consists of all points in the closed-open unit
interval [0, 1).

The orbit from φ 128 = 1•00 is an example of
both an invariant orbit, and a Garden of Eden, to
be defined in Sec. 3.

Example 2. χ1
200

The graph of the characteristic function χ1
200

of
200 is shown in Fig. 3(b). In this case, observe
that there are many vertical lines which terminate
exactly on the main diagonal. There are therefore
many period-1 fixed points which imply the pres-
ence of many period-1 attractors. This is character-
istic of local rules belonging to Wolfram’s class 1
rules [Wolfram, 2002]. We will return to this class
of attractors in Sec. 3.

Example 3. χ1
170

The graph of the characteristic function χ1
170

of
170 is shown in Fig. 4(a). Note that there are no
period-1 fixed points except at φ 170 = 0•00 and
φ 170 = 1•00. Observe also the vertices of all verti-
cal lines fall on one of two parallel lines with slope =
2. This is an example, par excellence, of the classic
Bernoulli shift [Nagashima & Baba, 1999], a subject
to be discussed at length in Sec. 5.

Example 4. χ1
240

The graph of the characteristic function χ1
240

of
240 is shown in Fig. 4(b). There are no period-1
fixed points except at φ 240 = 0•00 and φ 240 =
1•00.2 The “double-valued” appearance is only illu-
sory because all red vertical lines terminate on
the lower straight lines of slope = 1/2, and all

blue vertical lines terminate on the upper parallel
straight lines. Since the blue and red vertical lines
interleave but do not intersect each other, χ1

240
is a

well-defined single-valued function. In fact, a careful
examination of χ1

170
and χ1

240
in Fig. 4 will reveal

that these two piecewise-linear functions are inverse
of each other. Subsets of both characteristic func-
tions in Fig. 4 are typical of Wolfram’s class 2 rules.

Example 5. χ1
30

The graph of the characteristic function χ1
30

of 30
is shown in Fig. 5(a). This complicated characteris-
tic is typical of all local rules belonging to Wolfram’s
class 3 CA rules.

Example 6. χ1
110

The graph of the characteristic function χ1
110

of
110 is shown in Fig. 5(b). This rather exotic
characteristic exhibits many features typical of
Wolfram’s class 4 rules.

Example 7. χ1
51

and χ2
51

The graphs of the “time-1” characteristic function
χ1

51
and “time-2 ” characteristic function χ2

51
of

51 are shown in Figs. 6(a) and 6(b), respectively.
Observe that while there is only one period-1 fixed
point in χ1

51
, every vertical line terminates on the

main diagonal of χ2
51

. This implies that 51 has
a dense set of period-2 invariant orbits. Such local
rules will be studied in Sec. 4.4.

Example 8. χ1
62

and χ3
62

The graphs of the “time-1” characteristic function
χ1

62
and “time-3 ” characteristic function χ3

62
of

62 are shown in Figs. 7(a) and 7(b), respectively.
Observe that while there are no period-1 fixed
points in χ1

62
, there are many vertical lines which

landed on the main diagonal of χ3
62

. This implies
that 62 has many period-3 attractors. Such local
rules will be studied in Sec. 4.3.

3. Transient Regimes and Attractors

For a CA with finite I, the state space contains
exactly n

Σ
� 2I′ distinct states, where I ′ = I + 1.

It follows that given any initial state

x(0) =
[
x0(0) x1(0) · · · xI−1(0) xI(0)

]
(22)

2The leftmost vertical line should actually be drawn at φ = ε ≈ 0. Printer resolution precludes our showing the correct value
χ1

240
(0.00) = 0.00.
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the dynamic pattern DN [x(0)] evolving from the
initial state x(0) under any local rule N must
eventually repeat itself with a minimum period TΛ,
where the

Attractor period TΛ ≤ 2I+1 (23)

depends only on the local rule N , and is indepen-
dent of the initial state x(0), assuming x(0) belongs
to the basin of attraction of a period-TΛ attractor
Λ to be defined below.

Definition 1. Transient Regime and Transient
Duration: Given any local rule N , and any ini-
tial configuration x(0), let Tδ be the smallest non-
negative integer such that

x (Tδ + TΛ) = x (Tδ) (24)

Since x(t), t = 0, 1, 2, . . . , Tδ − 1, will never recur
again for all t ≥ Tδ, the first Tδ consecutive rows of

the dynamic pattern DN [x(0)] is called the tran-
sient regime originating from the initial state x(0)
and the time (Tδ−1) is called the transient duration.

Definition 2. Period-TΛ Attractor: If Tδ > 1,
then the TΛ consecutive rows of DN [x(0)]
denoted by

ΛN (x(0)) � x(Tδ) ∪ x(Tδ + 1) · · ·
∪x(Tδ + (TΛ − 1)) (25)

is called a period-TΛ attractor of the local
rule N originating from the initial configuration
x(0). The set BΛ of all initial states x(0) which
tend to the attractor Λ is called the basin of attrac-
tion of Λ.

To illustrate the above definitions, consider first
the dynamic pattern D 62 [xa(0)] shown in Fig. 8(a).
For the initial configuration xa (row 0 in Fig. 8(a)),
we find Tδ = 51 and TΛ = 3. Hence, the transient

(a) (b)

Fig. 8. Illustrations of the transient regime and transient duration of rule 62 originating from two different initial configu-
rations xa and xb.
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regime originating from xa of the dynamic pattern
D 62 [xa] consists of the first 51 rows in Fig. 8(a).
The period-3 orbit is clearly seen by the alternating
color backgrounds. For the dynamic pattern D 62 [xb]
shown in Fig. 8(b), observe that the initial configu-
ration xb (row 0 in Fig. 8(b)) gives rise to a longer
transient duration Tδ = 83.

However, since xa and xb in Fig. 8 were cho-
sen to belong to the basin of attraction of Λ, the
period TΛ of the periodic orbit in Figs. 8(a) and
8(b) must be the same, namely, TΛ = 3, as can be
easily verified by inspection of the dynamic pattern
in Fig. 8.

For some local rules, the period TΛ can be much
larger than the transient duration, as depicted in
the two dynamic patterns D 99 [xa] and D 99 [xb] in
Figs. 9(a) and 9(b) for local rule N = 99 . Observe
that Tδ = 14 and TΛ = 71 for D 99 [xa]. Similarly,
Tδ = 43 and TΛ = 71 for D 99 [xb].

In fact, there are local rules such as 110 and
30 , and their global equivalence classes, where TΛ

can tend to infinity as T → ∞ (for I = ∞). In such
cases, it is no longer useful to talk about a tran-
sient regime and we will simply refer to the entire
dynamic pattern DN [x(0)] as an orbit originating
from x(0).

The “basin of attraction” BΛ of an attrac-
tor Λ must contain, by definition, at least one
point not belonging to Λ. It is possible, how-
ever, for some periodic orbits to have no basin of
attraction.

Definition 3. Invariant Orbits: An orbit Γ whose
basin of attraction is the empty set is called an
invariant orbit.

It follows from Definition 3 that an invari-
ant orbit must have a zero transient duration, i.e.
Tδ = 1.

(a) (b)

Fig. 9. Illustrations of the transient regime and transient duration of rule 99 originating from two different initial configu-
rations xa and xb.
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Proposition 1. Local Equivalent Class S1
4 is

Invariant: The orbits of all six rules { 15 , 51 ,
85 , 170 , 204 , 240 } belonging to the local equiv-
alence class S1

4 [Chua et al., 2003] are invariant.

Proof. We will see in Table 2 and Sec. 5.4 that, for
finite I, every point in Fig. 4(a) is a point on a peri-
odic orbit of 170 whose dynamics consist of shifting
each initial string by one pixel to the left. Conse-
quently, there is no transient regime in this case and
hence all orbits of 170 are invariant orbits. Since
the shifting operation is preserved under the rota-
tional transformations of the local equivalence class
S1

4 listed in Table 25(o) of [Chua et al., 2003], it
follows that all orbits of 15 , 51 , 85 , 204 , and
240 are invariant as well. �

It has been verified by exhaustive computer
simulation that only the six rules belonging to S1

4
are endowed with only invariant orbits. In gen-
eral, invariant orbits have noninvariant neighbor-
ing orbits. We have seen earlier a special case
of an invariant orbit consisting of only a single
point; namely, φ 128 = 1•00 in Fig. 3(a). Observe
that in addition to having no basin of attraction,
φ 128 = 1•00 has no preimage (predecessor). Such
special initial configuration is called a garden of
Eden [Moore, 1962].

Observe that no garden of Eden can be a peri-
odic orbit with a period TΛ > 1, otherwise any
point on the orbit is a predecessor of its next iter-
ate. A period-1 garden of Eden is therefore a truly
unique specie worthy of its own name, henceforth
dubbed an isle of Eden. Indeed, we can generalize
this unique phenomenon, which does not exist in
continuous dynamical systems (such as ODE), to
define a “period-k ” isle of Eden from the kth iter-
ated characteristic function χk

N
of N . A gallery

of period-k isles of Eden of all one-dimensional cel-
lular automata will be presented in Part V of this
tutorial series.

3.1. Mapping CA attractors onto
time-τ maps

Since invariant orbits are not attractors, they are
not robust in the sense that precisely specified ini-
tial states must be used to observe them. Since
one of the most fundamental problems in nonlin-
ear dynamics is to analyze and predict their long-
term behaviors as t → ∞, we will develop some
novel and effective techniques for analyzing and

predicting global qualitative behaviors of robust CA
attractors.

In general, each CA local rule N can exhibit
many distinct attractors Λi, i = 1, 2, . . . ,Ω, as
demonstrated in Figs. 3–7. Each attractor repre-
sents a distinct operating mode and must be ana-
lyzed as a separate dynamical system. In order to
exploit the lateral symmetry exhibited by many
bilateral pairs N and N † � T †[N ] of local rules,
where T † denotes the left–right transformation
operation defined in [Chua et al., 2004], it is more
revealing to represent and examine each attractor
from two spatial directions, namely, a forward (left
→ right) direction and a backward (right → left)
direction.

Since each CA attractor Λ is periodic (for
finite I) with some period TΛ, it is usually rep-
resented by displaying TΛ consecutive binary bit
strings s1, s2, . . . , sTΛ

, as illustrated in Figs. 8 and
9. In order to exploit the analytical tools from non-
linear dynamics [Alligood et al., 1996; Shilnikov
et al., 1998], it is essential that we transcribe these
rather unwieldy pictorial data into an equivalent
nonlinear time series. Such a one-to-one transcrip-
tion is precisely defined by Eqs. (13) and (17) via
the commutative diagram shown in Fig. 2. Hence,
each forward Boolean string →x is mapped bijectively
onto a real number φ ∈ [0, 1] via Eqs. (12) and
(13). Similarly, each backward Boolean string

←
x(0)

is mapped bijectively onto a real number φ† ∈ [0, 1]
via Eqs. (16) and (17). Each “period-TΛ” attrac-
tor Λ defined by a pattern made of TΛ consecutive
Boolean strings is therefore mapped onto a forward
time series

ϕ = [φ0, φ1, φ2, . . . , φTΛ
], φi ∈ [0, 1], (26)

henceforth called a forward orbit, and a backward
time series

ϕ† = [φ†
0, φ

†
1, φ

†
2, . . . , φ

†
TΛ

], φ†
i
∈ [0, 1], (27)

henceforth called a backward orbit, where the length
of each time series (resp. period of each orbit) is
equal to TΛ.

It follows from the definition of the period of
an attractor that TΛ = 1 for all “period-1” attrac-
tors in Fig. 3(b), TΛ = 2 for all “period-2 ” attrac-
tors in Fig. 6(b), and TΛ = 3 for all “period-3 ”
attractors in Fig. 7(b). Attractors associated with
local rules belonging to Wolfram’s Classes 3 and 4
can have an extremely large period TΛ, a number
greater than the number of elementary particles in
the universe even for a relatively small I = 100.
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From a computational perspective, such time series
is effectively infinite in length.

The qualitative dynamics associated with an
attractor can often be uncovered and understood by
plotting the following two attractor-induced time-τ
maps [Alligood et al., 1996] associated with the for-
ward time series ϕ and the backward time series ϕ†,
respectively:

Forward time-τ map

ρτ [N ] : φn−τ �→ φn

(28)

Backward time-τ map

ρ†τ [N ] : φ†
n−τ �→ φ†

n

(29)

For each local rule N , the forward time-τ

map ρτ and the backward time-τ map ρ†
τ are

defined explicitly via the time-τ characteristic
function χτ

N
as follow:

ρτ (φn−τ ) = χτ
N

(φn−τ ) (30)

ρ†τ (φ†
n−τ ) = χτ

N
(φ†

n−τ ) (31)

Explicit coordinates (φn−τ , φn) and (φ†
n−τ

, φ†
n
)

for plotting each point of the forward time-τ map
ρτ [N ] and the backward time-τ map ρ†τ [N ], are
listed in Table 1 for τ = 1, 2, and 3.

When τ = 1, the resulting time-1 maps
[Alligood et al., 1996; Hirsch & Smale, 1974] ρ1[N ]
and ρ†

1
[N ] are sometimes called first-return maps

in the literature because they behave like Poincare
return maps [Poincare, 1897]. Figure 10 shows the
Poincare first-return map interpretation of four for-
ward time-1 maps ρ1[200], ρ1[51], ρ1[62], and ρ1[170]
of CA rules 200 , 51 , 62 , and 170 , repectively.
In each case, the Poincare cross-section is the same
unit square [0, 1]× [0, 1] we have encountered earlier
in our definition of the CA characteristic function
χ1

N
in Eq. (19). Only one out of many attractors is

shown for each time-1 map in Fig. 10.
In Fig. 10(a), only one period-1 attractor of rule

200 is shown (labeled as point 1©). The domain
of the time-1 map ρ1[200] in this trivial case con-
sists of only the single point { 1©}, and all iterates

map trivially onto the fixed point 1©. One can inter-
pret point 1© as the point where a planet intersects
an imaginary Poincare cross-section once every
revolution.

Figure 10(b) shows a period-2 attractor (out
of many others) of local rule 51 . The orbit of
the circulating planet intersects the Poincare cross-
section at two points. The domain of the time-1
map ρ1[51] is { 1©, 2©} where ρ1( 1©) �→ 2© and
ρ1( 2©) �→ 1©.

Figure 10(c) shows a period-3 attractor of local
rule 62 . The circulating orbit is seen to inter-
sect the Poincare cross-section at three points. The
domain of the time-1 map ρ1[62] consists of { 1©,
2©, 3©} where ρ1( 1©) �→ 2©, ρ1( 2©) �→ 3©, and
ρ1( 3©) �→ 1©.

Figure 10(d) shows a Bernoulli σ1-shift attrac-
tor (to be discussed in depth in Sec. 5) of local rule
170 where the domain of the time-1 map ρ1[170]
consists of all points on the two parallel lines with
slope equal to 2 for the case I = ∞. For finite
I > 60, the attractor consists of almost all points on
these two lines separated by tiny gaps ∆ < 10−18

and is therefore not discernible. The domain in the
case I = ∞ consists of the entire unit interval
[0, 1]. Only a few iterates ( 1©, 2©, 3©, . . . , 6©) are
shown to avoid clutter. One can associate the com-
plicated orbit in Fig. 10(d) with the trajectory of
a comet, which in this case would visit almost all
points on these two parallel lines, as originally envi-
sioned by Poincare.

In so far as the qualitative dynamics is con-
cerned, it suffices to examine the evolution of the
time-1 map induced by the orbit in Fig. 10. To illus-
trate this important insight discovered by Poincare,
let us examine the forward time-1 map of a period-3
attractor of 62 consisting of points 1©, 2©, 3© in
Fig. 11(a), as well as the associated backward time-1
map in Fig. 11(b) consisting of points 1′©, 2′© and 3′©.

In order to illustrate what we mean by the
fundamental principle which asserts that CA rules
belonging to the same global equivalence class εκ

m

[Chua et al., 2004] must have identical qualitative
dynamics, we also show the forward time-1 map for
118 in Fig. 11(c), and the backward time-1 map
for 118 in Fig. 11(d), where 118 and 62 belong
to same equivalence class ε2

22 derived in [Chua et al.,
2004]. Since 118 and 62 are related by a left–right
transformation operator T†, i.e. T †[62] = 118 , it
follows from the theory of global equivalence class
developed in [Chua et al., 2004], that the two rules
62 and 118 have identical qualitative behaviors.



May 15, 2005 14:51 01299

1060 L. O. Chua et al.

Table 1. Explicit coordinates (φn−τ , φn) for defining time-τ maps for τ = 1, 2, 3.
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Fig. 10. Poincare return map interpretation of four forward time-1 maps. (a) Period-1 map ρ1[200]. (b) Period-2 map ρ1[51].
(c) Period-3 map ρ1[62]. (d) Bernoulli σ1-shift map ρ1[170].

In particular, they have, qualitatively, the same
transient regimes, the same attractors, and the
same invariant orbits, modulo a bijection. More-
over, their dynamics must also be mapped onto each
other, as depicted by the diagram shown in Fig. 11.
This well-known geometrical construction is called
a Lameray diagram [Shilnikov et al., 1998], named
after the French mathematician Lameray who first
discovered its pedagogical value in the eighteenth
century. It is also called a cobweb diagram [Alligood
et al., 1996] because it resembles the web spun by
a spider.

Important Observation

Every Point on the forward time-1 map ρ1 :
φn−1 �→ φn, or the backward time-1 map ρ†1 :
φ†

n−1 �→ φ†
n, of any CA rule N is a point on

the characteristic function χ1
N

.

In other words, the CA characteristic function
χ1

N
is a complete and global representation of N .

It is complete because it contains all information
needed to derive the dynamic evolutions from any
initial state by simply drawing a Lameray (cobweb)
diagram directly on χ1

N
! It is global because each

point on χ1
N

codes for an entire configuration of
length I + 1, and not just for one pixel if the local
rule were used instead. Clearly, the points defining
the time-1 maps ρ1[N ] and ρ†1[N ] are subsets of the
points defining the characteristic function χ1

N
.

It follows from the above observation that every
point on a time-τ map of N is a point on the time-τ
characteristic function χτ

N
.

Remarks

1. If we imagine the three points on the time-
1 map ρ1[62] in Fig. 11(a) as points on a
unimodal function (e.g. logistic map) [Alligood
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Fig. 11. Cobweb diagram showing the evolution of 62 and 118 from any state of a period-3 attractor in forward time (a and
c), and backward time (b and d). Points �k and �k′ denotes corresponding instants of time.

et al., 1996], then we can associate this particu-
lar period-3 attractor of 62 as a period-3 point
of a continuous map f : [0, 1] → [0, 1] which
we know is chaotic because “period-3 implies
chaos” [Alligood et al., 1996].

2. It follows from Remark 1 above that every for-
ward and backward time-1 map exhibited in
Table 2 of Sec. 3.2 can be interpreted as a
period-TΛ attractor of a continuous map f :
[0, 1] → [0, 1] over the unit interval [0, 1].

3. It follows from Remark 2 above that for every
CA rule N , N = 0, 1, 2, . . . , 255, and finite I,
we can construct a continuous one-dimensional
map fN : [0, 1] → [0, 1] which has a period-TΛ

point coinciding with a period-TΛ attractor, or
invariant orbit, of rule N .

4. It follows from Remark 3 above that since all
attractors, or invariant orbits, of a CA rule N
are disjoint sets of points over [0, 1], we can
always construct a polynomial PN (x), x ∈ [0, 1],
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which passes through all of these points. In
fact, we can invoke the canonical representa-
tion from [Chua & Kang, 1977] to derive an
explicit equation PN (x) involving the absolute
value function as the only nonlinearity, such that
PN (x) passes through the union of all points
associated with all attractors Λi, i = 1, 2, . . . ,Ω
of N . The continuous real-valued function
PN (x ) : [0, 1] → [0, 1], henceforth called a “Rule
N induced function,” contains each attractor,
Λi, i = 1, 2, . . . ,Ω, of N as a period-TΛi point.
Since PN (x) can be constructed to include also
attractors not observed from N , it clearly has
much richer nonlinear dynamics. Hence, for finite
I, all attractors and invariant orbits of each of
the 256 CA rules can be imbedded into a sin-
gle continuous real-valued function over the unit
interval [0, 1].

3.2. A gallery of time-1 maps and
power spectrum

The qualitative dynamics and long-term asymp-
totic behaviors of each attractor of a local rule
N can often be predicted from one or more of
its time-τ maps ρτ [N ], τ = 1, 2, . . . . In fact, a
total of 224 out of 256 local rules have attrac-
tors that resemble those shown in Fig. 10, or their
“compositions”. For an in-depth study of some of
these rules in Sec. 5, and in Part V, as well as
for future reference, a gallery of the forward time-1
map ρ1[N ] and the backward time-1 map ρ†

1[N ]
of up to three distinct attractors are exhibited
in Table 2. For local rules with several qual-
itatively different attractors, their time-1 maps
are printed in different colors. Unlike in Figs. 10
and 11, the points are not labeled to avoid
clutter.

For each rule N in Table 2, the forward time-1
map ρ1[N ] is printed in the left column and the
backward time-1 map ρ†1[N ] is printed in the right
column. All points with the same color (red, blue,
or green) pertain to an attractor of the same color.

The power spectrum of the forward time series
ϕ of Eq. (26) associated with the red “forward ”
time-1 map is calculated using the Mathcad soft-
ware and printed in the middle column.3 We will see
in Sec. 6 that the power spectrum reveals additional
valuable and insightful information which cannot be
extracted from time-τ maps.

Table 2 contains 256 three-component frames,
henceforth referred to in this paper as CA attrac-
tor vignettes, corresponding to the 256 local rules.
Each vignette N provides a signature of the type of
attractors inhabiting a CA local rule N . Except for
the six local rules 15 , 51 , 85 , 170 , 204 , and
240 (to be discussed in Sec. 4.4), whose dynamic
patterns are invariant orbits, all other vignettes
contain information on “robust” CA attractors.

The simplest vignette shows the time-1 map (in
red) of only one attractor (e.g. vignette 2 ). In this
case, the power spectrum pertains to the forward
time-1 map ρ1[2] depicted in the left column. We
will show in Sec. 6 that some spectrum harbors
additional albeit nonrobust dynamic modes.

Vignette 11 of Table 2 shows two time-1
maps (colored in red and blue, respectively) corre-
sponding to two distinct types of attractors, called
Bernoulli attractors, to be analyzed in Sec. 5. In this
case, the power spectrum pertains to the red for-
ward time-1 map ρ1[11] depicted in the left column.

Vignette 25 shows three time-1 maps (colored
in red, blue, and green, respectively) correspond-
ing to three distinct types of attractors to be ana-
lyzed in Sec. 5. In this case, the power spectrum,
as always, pertains to the red forward time-1 map
ρ1[25] depicted in the left column.

An exception to our 3-color code applies to
time-1 maps of rules with a continuum of period-1
and period-2 attractors. Since such attractors are
qualitatively similar, only a dull blue color is used
to indicate various clusters of period-1 and period-2
points. In addition, the location of two typical
period-1 points are identified as solid dots (painted
in light red and light blue color) in both forward and
backward time-1 maps of such period-1 attractors
(e.g. ρ1[4] and ρ†1[4] for N = 4). Note that the back-
ground color of the power spectrum of all period-1
time-1 maps are painted yellow with only a bold red
line emerging at f = 1 signifying the absence of any
other frequency components.

Similarly, two typical pairs of solid points are
painted red and blue at the precise locations where
they are located in both forward and backward
time-1 maps of period-2 attractors for those rules
harboring a continuum of period-2 attractors (e.g.
N = 5, 51, etc). All other period-2 points form clus-
ters and are painted in dull blue color. The power
spectrum of all period-2 time-1 maps consists of a
bold red line located at f = 1/2.

3The power spectrum of the corresponding backward time-1 map is qualitatively identical and is therefore redundant.



May 15, 2005 14:51 01299

1064 L. O. Chua et al.

Table 2. Gallery of forward time-1 maps ρ1[N ] and backward time-1 maps ρ†1[N ] for attractor Λ1(red), Λ2(blue), and
Λ3(green).
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All power spectra in Table 2 are calculated with
I = 450. In some more intricate cases, such as
110 , 54 , etc., a larger value of I ≥ 900 is used.
An (I + 1)-bit random bit string generated by a
Borland Delphi random function software is used
as our initial configuration (i.e. initial state). This
bit string is not repeatable in view of its random
nature. Since a sufficiently long random bit-string
should in principle contain all possible combinations
distributed over different portions of the string, we
can expect that most of the robust modes of each
local rule N will emerge in the subsequent itera-
tions. Indeed, all vignettes in Table 2 are repeatable
with different random bit strings.

In the case where there are multiple attrac-
tors with widely-separated basins of attractions we
must repeat our simulations with different care-
fully chosen initial states. We usually choose initial
configurations containing various periodic subcon-
figurations of different periods. It is important that
such choices do not provoke the nonlinear dynam-
ics from escaping into another basin of attraction.
To enhance our chances of uncovering most of the
robust modes, we usually found it useful to ran-
domize the periodicity and relative positions of the
various subconfigurations.

To obtain a reliable power spectrum at
very low-frequency ranges, we have significantly
extended our simulation time for some rules, such
as 110 , 137 , etc., in order to obtain a sufficiently
long time series of length up to n = 216 = 65536.
Such lengthy simulations also call for a correspond-
ing increase in I because f = 1/(I + 1) repre-
sents the lowest observable frequency component.
For rules in Table 2 which exhibit a 1/f -spectrum,
namely, the four universal computing rules 110 ,
124 , 137 , and 193 [Chua et al., 2004] discussed
in Sec. 6.2, the determination of their low-frequency
spectra in Table 2 requires an immense amount of
simulation times.

3.3. Three general properties of
time-1 maps

Following are some fundamental relationships
exhibited by time-1 maps between various local
rules. Let N † � T †[N ] denote the local rule
obtained by applying the left–right transformation
operator T† to N [Chua et al., 2004]. We will hence-
forth call N † the lateral twin of N , and vice versa.

The twin rules (N,N †), N = 0, 1, 2, . . . , 255, are
globally equivalent and listed in Table 1 of [Chua
et al., 2004]. It is therefore not surprising that their
forward and backward time-1 maps are related.

Time-1 map Property 1: Dual mapping
Correspondence

(1) The forward time-1 map ρ1[N ] of N is identical
to the backward time-1 map ρ†1[N

†] of N †:

ρ1[N ] = ρ†1[N
†] (32)

(2) The forward time-1 map ρ1[N †] of N † is iden-
tical to the backward time-1 map ρ†1[N ] of N :

ρ1[N †] = ρ†1[N ] (33)

The proof follows from Eqs. (13), (17), (28)
and (29).

As an example, compare vignette 110 and its
lateral twin vignette 124 in Table 2. Observe the
left frame of vignette 110 and the right frame of
vignette 124 are identical. Similarly, the left frame
of vignette 124 and the right frame of vignette 110
are also identical.

It is instructive for the reader to verify the Dual
mapping Correspondence by comparing the twin
vignettes of all rules in Table 2, thereby obtaining
a “constructive”, albeit less rigorous, proof.

If N is bilateral in the sense that N † �
T †[N ] = N , i.e. N is a fixed point of the left–
right transformation T†, then we have the following
Corollary:

Time-1 map Property 2: Bilateral mapping
invariance

The forward time-1 map ρ1[N ] and the backward
time-1 map ρ†1[N ] of any bilateral CA rule N are
identical.

There are 64 bilateral CA rules. They are listed
in Table 8 of [Chua et al., 2004]. For all of these
rules, their vignettes in Table 2 have identical left
and right frames (e.g. 0 , 1 , 4 , 5 , 18 , 19 , etc.).

Time-1 map Property 3: π-rotation mapping
symmetry4

1. The forward time-1 map ρ1[N ] of N and the
forward time-1 map ρ1[N ] of N

∆= T [N ]

4Time-1 map property 3 is true for all rules except { 57 , 99 , 184 , 226 }.
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are related by a 180◦ rotation about the
center.5

2. The backward time-1 map ρ†1[N ] of N and the
backward time-1 map ρ†1[N ] of N � T [N ] are
related by a 180◦ rotation about the center.

Remarks

1. The time-1 map property 3 can be verified by
inspection of Table 2.

2. The above three properties are stated for time-1
maps for simplicity. The same properties hold
also for time-τ maps for all τ .

3. We have verified, by computer simulations, that
the above three properties are consistent with all
time-1 maps listed in Table 2. It is truly remark-
able that such consistency is achieved by using
only one random configuration “probing” string
for each attractor.

4. Our computer simulation results have pro-
vided a resounding validation of Wiener’s bril-
liant insight of using random signals as probes
for nonlinear system characterizations [Wiener,
1958].

3.4. Invertible time-τ maps

Since the period TΛ of any attractor of N is the
smallest integer where the orbit repeats itself, no
two points in the domain of the functions ρτ [N ]
and ρ†τ [N ] can map to the same point, it follows
that both maps ρτ [N ] and ρ†τ [N ] are bijective, and
hence have a well-defined single-valued inverse map
[ρτ [N ]]−1 and [ρ†τ [N ]]−1, respectively.

More than half (146 out of 256) of all
one-dimensional CA rules exhibit the following
important mathematical property which makes the
nonlinear dynamics of these rules tractable.

Definition 3. Invertible Time-τ map (I = ∞): The
forward time-τ map ρτ [N ] : [0, 1] → [0, 1] defined in
Eq. (29) (for τ = 1) is said to be invertible over
[0, 1] iff

ρτ [N ] = [ρ†τ [N ]]−1 (34)

Similarly, the backward time-τ map ρ†τ [N ] : [0, 1] →
[0, 1] defined in Eq. (30) (for τ =1) is said to be
invertible over [0, 1] iff

ρ†τ [N ] = [ρτ [N ]]−1 (35)

Remarks

1. It is important to keep in mind that each time-τ
map is associated with one, and only one, attrac-
tor. We will see in Example 3 below that time-τ
maps corresponding to different attractors of the
same rule N may exhibit different invertibility
property.

2. For finite I, the domain of the functions ρτ [N ]
and ρ†τ [N ] in Definition 3 must be restricted to
a subset of all rational numbers on [0, 1].

Geometrical Interpretation of Invertible
time-1 maps

For τ = 1, the two conditions (34) and (35) are
equivalent to the condition that the set of points,
henceforth called the graphs of ρ1[N ], and ρ†1[N ], in
the left and right frames of vignette N , are mirror
images (i.e. reflection) of each other relative to the
main diagonal.

Example 1. Consider vignette 3 of Table 2. Its
left and right frames have only one color (red).
Hence 3 has only one robust attractor.6 Since the
graph of ρ1[3] on the left and the graph of ρ†1[3] on
the right of vignette 3 are reflections of each other
about the main diagonal, the time-1 maps ρ1[3] and
ρ†1[3] are invertible.

Example 2. Consider vignette 11 . The two colors
in the left and right frames imply that 11 has at
least two robust attractors. But since both graphs
of the same color are mirror images about the diag-
onal, both pairs of time-1 maps of 11 are invertible.

Example 3. Consider vignette 110 . The red color
graphs on the left and the right sides of vignette
110 are clearly not mirror images of each other.
Hence, the forward time-1 map ρ1[110] and the
backward time-1 map ρ†1[110] are not invertible.

5The symbol T denotes the global complementation operator defined in [Chua et al., 2004]. Indeed, the two forward time-1 maps
{ρ1[N ], ρ1[N ]} form a two-element Abelian group whose group multiplication operation consists of a 180◦ rotation about the

center. Similar property applies to the two backward time-1 maps {ρ†1[N ], ρ
†
1[N ]}. Both are examples of the abstract element

group C2.
6For each vignette in Table 2, we have shown only time-1 maps of robust attractor prototypes. Many rules have attractors that
can only be observed with specially chosen initial configurations.
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Example 4. Finally, consider vignette 62 . There
are at least two attractors. The graphs of the
red color time-1 maps ρ1[62] and ρ†1[62] con-
sisting of only three red dots7 are not mirror
symmetric about the main diagonal. It follows
that the red color forward and backward time-1
maps of 62 are not invertible. In contrast, the
blue color time-1 maps ρ1[62] and ρ†1[62] consist-
ing of a large ensemble of points exhibit reflec-
tion (mirror) symmetry about the diagonal and
hence the two blue color time-1 maps of 62 are
invertible.

Remarks

1. A forward time-1 map ρ1[N ] is invertible if, and
only if, its associated backward time-1 map ρ†1[N ]
is invertible.

2. Since the “composition” between two invertible
functions is also an invertible function, it follows
that if a forward time-1 map ρ1[N ], or a back-
ward time-1 map ρ†1[N ], is invertible, then so are
their associated time-τ maps ρτ [N ] and ρ†τ [N ],
for any integer τ .

4. Period-k Time-1 Maps: k = 1, 2, 3

In this section we organize local rules into three
separate groups based on the global qualitative
behaviors of their time-1 maps, which were derived
from random initial configurations. Each time-1
map is the outcome of a single random initial
state. Unlike the 256 dynamic patterns presented in
[Wolfram, 2002] and [Chua et al., 2003], which have
no predictive ability because the “probing” input
signal consists of only a single red center pixel, the
time-1 maps in Table 2 can be used, with complete
confidence, to predict the long-term behaviors due
to any initial configurations. Time-1 maps are, qual-
itatively, reminiscent of the classic Green’s function
from theoretical physics, the impulse response from
linear circuit and system theory [Chua et al., 1987]
and the Brownian motion response a la Wiener
[Wiener, 1958], where in all cases, a single testing
signal is enough to predict the response to any
initial configurations.

4.1. Period-1 rules

Our research on time-1 maps of period-1 attrac-
tors has found that there are a total of 93 (out of
256) one-dimensional CA rules from Table 2 with
robust period-1 modes in the sense that almost all
random initial states will converge to a period-1
configuration; namely, a fixed point. These 93 rules
can be logically partitioned into four distinct fam-
ilies whose members are listed in Tables 3 and 4,
respectively. These rules are organized in accor-
dance with the theory of global equivalence class εκ

m

developed in [Chua et al., 2004].8 Since all mem-
bers of a given equivalence class εκ

m have identical
global dynamical behaviors, it suffices to examine
and analyze in depth only one member of each class.
Since Table 3 contains 45 rules which exhibit invert-
ible time-1 maps, we will henceforth refer to these
rules as invertible rules for simplicity. These rules
are invertible because their forward time-1 maps
ρ1[N ] and backward time-1 maps ρ†1[N ] are identical
with respect to both color and position, along the
main diagonal, and hence they satisfy Definition 3
in a trivial way. Observe that since there are only
20 global equivalence classes in Table 3, only 20
out of the 45 invertible rules have qualitatively dis-
tinct global dynamical response to arbitrary initial
states, including transient, attractor, and invariant
orbit regimes, and their respective basins of attrac-
tion (for attractors).

Table 4 contains 24 noninvertible period-1 rules
from Table 2. Since they can be partitioned into
six global equivalence classes, only six represen-
tative noninvertible period-1 rules warrant an in-
depth analysis. Observe that the rules in Table 4 are
noninvertible because each fixed point of ρ1[N ] in
the left frame of vignette N does not map into the
same point in ρ†1[N ] in the right frame of vignette
N . For example, the red fixed point in the left
frame of vignette 12 and its corresponding fixed-
point in the right frame of vignette 12 are two dif-
ferent points, and hence are not mirror images of
each other, relative to the main diagonal.

A careful examination of the vignettes in
Table 2 corresponding to the 45 time-1 maps from
Table 3 reveals that there are 12 rules from Table 3
which must tend to a homogeneous “0” (colored

7Note that the domain of the two red color time-1 maps ρ1[62] and ρ†1[62] consists of only three rational numbers, obtained
by projecting the three red points onto [0, 1].
8Throughout this paper, each rule N is coded in red, blue or green color, in accordance with the complexity index [Chua et al.,
2002] κ = 1, 2, or 3, respectively.
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Table 3. 45 Invertible period-1 rules, among them only 29 are bilateral.
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Table 4. 24 Noninvertible period-1 rules.

blue in Fig. 12) attractor and another 12 rules
which must tend to a homogeneous “1” (colored
red in Fig. 13), for almost all initial states. These
24 homogeneous rules are collected in Tables 5

and 6, respectively. Since all time-1 maps in Table 5
consists of a fixed point at φn = 0•00, we can
predict that all dynamic patterns from the 12
rules in Table 5 must tend to a homogeneous “0”

Fig. 12. All rules belonging to Table 5 tend to a homogeneous blue (“0”) state, regardless of the initial state, chosen randomly.
Each pattern has 67 rows and 11 columns.
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Fig. 13. All rules belonging to Table 6 tend to a homogeneous red (“1”) state, regardless of the initial state, chosen randomly.
Each pattern has 67 rows and 11 columns.

Table 5. 12 Homogeneous “0” (blue) Rules. All are
invertible but only four are bilateral.

Table 6. 12 Homogeneous “1” (red) Rules. All are invert-
ible but only four are bilateral.
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(blue) pattern after Tδ iterations. Simulating these
12 rules from a random initial state leads to the 12
dynamic patterns shown in Fig. 12, which confirm
our prediction of a homogeneous blue steady state.

A similar analysis of the 12 rules in Table 6
shows a common fixed point at φ = 1•00, which
implies a homogeneous “1” (red) steady state
response, as confirmed by the simulation results
shown in Fig. 13.

A comparison of Tables 3 and 5 shows that
all nonbilateral (i.e. N 
= N †) period-1 rules from
Table 3 are members of Tables 5 and 6, which
can exhibit only trivial homogeneous “0” and “1”,
respectively, patterns. Hence, all invertible non-
homogeneous period-1 rules are bilateral. However,
there are 16 invertible but nonbilateral period-1
rules; they all yield trivial homogeneous “0” or “1”
patterns and are listed in Tables 5 and 6.

As an illustration, the dynamic patterns
DN [x(0)] of three invertible (and bilateral ) period-
1 rules selected from Table 3 are displayed in the
left column of Fig. 14; namely, N = 4 , 77 ,
and 232 . Observe that since 223 in Table 3
belongs to the same global equivalence class
ε1
5 as that of 4 , it has the same qualitative

behaviors as 4 [Chua et al., 2004], and need

not be examined. Three additional period-1 pat-
terns chosen from three noninvertible and non-
bilateral rules listed in Table 4 ( 44 , 78 , and
172 ) are displayed in the right column of Fig. 14.
By the same principle of global equivalence, we
can predict that the three rules

{
100 , 203 , 217

}
∈ ε2

16 must have the same qualitative behavior as
44 . Similarly, the three rules

{
92 , 141 , 197

} ∈
ε3
5 must have the same qualitative behaviors as
78 , and the three rules

{
228 , 202 , 216

} ∈
ε3
8 must have the same qualitative behaviors

as 172 .
Except for the 12 homogeneous “0” rules in

Table 5 and the 12 homogeneous “1” rules in
Table 6, all other period-1 rules in Tables 3 and
4 consist of clusters of period-1 points distributed
over different locations on the main diagonal of
the respective vignettes in Table 2. To demon-
strate that the three time-1 map properties from
Sec. 3.3 hold for all period-1 attractors, two typ-
ical period-1 points are highlighted as red and
blue dots in each period-1 vignette in Table 2.
Observe that the red and blue dots occupy iden-
tical positions in the left and the right frames of
each vignette for all bilateral period-1 rules (e.g.
4 , 36 , 72 , etc.), as predicted by the bilateral

Fig. 14. Gallery of six period-1 dynamic patterns. The patterns on the left are invertible and bilateral. Those on the right
are noninvertible and nonbilateral. Each pattern has 68 rows and 26 columns. The initial configurations (row 0) are chosen
randomly.
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mapping invariance. Clusters associated with non-
bilateral period-1 rules in the left frame are differ-
ent from those in the right frame of corresponding
vignettes, (e.g. 12 , 13 , 44 , etc.). However, the
π-rotation mapping symmetry implies that the left
frame of vignette N must be identical to the right
frame of vignette T [N ], modulo 180◦ rotation about
the center. Indeed, the left frame of vignette 12 and
the right frame vignette T [12] = 207 are related by
a 180◦ rotation, as predicted.

While there are many nonhomogeneous
period-1 attractors, each represented by a point
belonging to some dull blue cluster in Table 2,
there is only one attractor (shown in red ) in all,
except eight (namely, 40 , 96 , 168 , 224 , 235 ,
249 , 234 , and 248 ), homogeneous period-1 rules
in Table 2. These eight exceptions, shown in blue,
are endowed with a second attractor of a more
complicated type (called a Bernoulli σ1-shift) to be
discussed in Sec. 5.

Since there are a total of 69 period-1 CA rules
(45 in Table 3 and 24 in Table 4), and since 24
among them (12 in Table 5 and 12 in Table 6)
have only one period-1 attractors, namely, 12 homo-
geneous “0” attractors and 12 homogeneous “1”
attractors, there are altogether 45 period-1 CA rules
having many distinct period-1 points clustered in
disconnected groups along the main diagonal in the
left and right frames of their associated vignettes
in Table 2 (printed in dull blue color). For finite I,
these period-1 point are rational numbers on (0, 1).
Since rational numbers are denumerable [Niven,
1967], these period-1 points are sparsely distributed
and almost every point on (0, 1) are not period-1.

4.2. Period-2 rules

An examination of Table 2 shows that there are
17 invertible CA rules possessing period-2 attrac-
tors. They are listed in Table 7, organized into 10
global equivalent classes. All 17 rules in Table 7 are
bilateral, i.e. N = N †. In addition, there are eight
noninvertible CA rules from three global equivalent
classes possessing period-2 attractors, as exhibited
in Table 8. Observe that all of these rules are non-
bilateral.

Each period-2 attractor is manifested by two
isolated points, symmetrically positioned with
respect to the main diagonal in both forward and
backward time-1 maps in Table 2. As in the period-1
case, in general there are many distinct period-2
attractors for each period-2 CA rule, and they tend

to be organized in various disconnected clusters;
they are depicted in dull blue color in each period-2
vignette in Table 2. In addition, two prototype
period-2 points are singled out and printed in red
and blue colors, respectively, at their precise loca-
tions (within the resolution of the printer).

The 17 rules in Table 7 are invertible because
corresponding points in their forward and backward
time-1 maps in the corresponding left and right
vignette frames in Table 2 are symmetric, with
respect to both color and position, about the main
diagonal.

Observe also that the left and right vignette
frames in Table 2 of all 17 rules in Table 7 are iden-
tical, as predicted by the “bilateral mapping invari-
ance” (time-1 map property 2).

The eight rules in Table 8 are noninvertible
because their forward and backward time-1 maps
are not symmetric with respect to the main diag-
onal. For example, the left and right frames of
vignette 28 in Table 2 are not mirror symmetric
with respect to the main diagonal. Observe, how-
ever, that the right frame of vignette 28 is identical
to the left frame of vignette 70 ( 70 = T †[ 28 ]) in
Table 2, as predicted by the “dual mapping Corre-
spondence” (time-1 map property 1). Similarly, the
left frame of vignette 28 is identical to the right
frame of vignette 70 .

Observe next that the left frame of vignette
28 and the left frame of vignette 199 = T [ 28 ]
are related by a 180◦ rotation about the center, as
predicted by the “π-rotation mapping symmetry”
(time-1 map property 3). Similarly, the right frame
of vignette 28 and the right frame of vignette 199
are related by a 180◦ rotation.

As an illustration, the dynamic patterns
DN [x(0)] of three invertible (and bilateral ) period-2
rules selected from Table 7 are displayed in the left
column of Fig. 15, namely, N = 33 , 51 , and
108 . Observe that since 123 in Table 7 belongs
to the same global equivalence class ε2

10 as that of
33 , it has the same qualitative behaviors as 33 .
Three additional period-2 patterns chosen from
three noninvertible and nonbilateral rules listed in
Table 8 ( 28 , 29 , 198 ) are displayed in the right
column of Fig. 15. By the same principle of global
equivalence, we can predict that the three rules{

70 , 199 , 157
} ∈ ε2

8 must have the same quali-
tative behavior as 28 . Similarly, rule 71 ∈ ε3

2 must
have the same qualitative behaviors as 29 , and rule
156 ∈ ε2

40 must have the same qualitative behaviors
as 198 .
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Table 7. 17 Invertible period-2 rules (all are bilateral rules).

Table 8. 8 Noninvertible period-2 rules (all are nonbilateral rules).

Finally, we note from Table 2 that all eight non-
invertible and nonbilateral period-2 rules in Table 8
possess an additional form of symmetry; namely,
the forward time-1 map ρ1[N ] is related to the back-
ward time-1 map ρ†1[N ] by a 180◦ rotation about the
center. In other words, the left and right vignette
frames of each rule in Table 8 are related by a
180◦ rotation about the origin. We will henceforth

call this rather rare property a self π-rotation
symmetry.

4.3. Period-3 rules

A comprehensive examination of Table 2 shows that
there are only four CA rules that possess robust
period-3 attractors, namely, 62 , 118 , 131 , and
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Fig. 15. Gallery of six period-2 dynamic patterns. The patterns on the left are invertible and bilateral. Those on the right
are noninvertible and nonbilateral. Each pattern has 68 rows and 26 columns.

145 . An examination of the vignettes of these four
rules in Table 2 show that they are nonbilateral and
noninvertible. Since all four rules belong to the same
global equivalence class ε2

22, as depicted in Table 9,
it follows that it suffices to conduct an in-depth
analysis of only one of these four rules. Since we
have already been exposed to 62 in Fig. 11, let us
continue to use this rule for illustrations.

Figure 16 shows the dynamic pattern DN [x(0)]
of 62 , 118 , 131 , and 145 for different choices of
initial states which give rise to qualitatively similar
evolution patterns. Observe that each pattern con-
verges to a period-3 attractor after some transient
time Tδ whose value depends on the initial states.
The presence of a robust period-3 mode in 62 can
be predicted from the power spectrum of the forward
time series ϕ (defined in Eq. (26)) where a sharp
peak centered at f = 1/3 is clearly discernible.

In addition to the robust period-3 time-1 maps
depicted (in red) in vignettes 62 , 118 , 131 , and
145 , there is a second robust attractor, depicted
in blue in Table 2 which can only be understood by
examining its associated time-2 map ρ2[62] to be
discussed in Sec. 5.

Just like period-1 and period-2 rules, there are
many other robust period-3 attractors in 62 , 118 ,
131 , and 145 . They are distributed over the unit
square as dull blue clusters.

Unlike the dynamics patterns associated with
period-1 and period-2 rules where different subpat-
terns evolve independently from one another, and
do not interact with one another, we see from 62
that several subpatterns can interact and compete
in the sense that one subpattern usually emerges as
the winner, after annihilating other competing sub-
patterns. Such interactions occur in the dynamics of

Table 9. 4 Noninvertible period-3 rules (all are nonbilateral rules).
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Fig. 16. Evolutions of four globally equivalent rules 62 , 118 , 131 , and 145 . All patterns consist of 82 rows and 66
columns.
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62 because it can support subpatterns which prop-
agate to the left, and to the right, thereby colliding
with each other in due time.

4.4. Invariant orbits

For finite I, there can be only a finite number TΛ of
points on the forward and backward time-1 maps
of any rule N . This implies that the domain of
time-1 maps are generally extremely sparse even for
rules with a very large period TΛ. Geometrically
this means that a vertical line drawn through an
arbitrary point φn−1 ∈ (0, 1) will almost never inter-
sect the time-1 map of most rules. In other words,
one expects to see many gaps in most time-1 maps
in Table 2.

A careful examination of all 256 rules in
Table 2 reveals that there are six, and only six
rules, which have a dense time-1 map; namely,
{ 15 , 51 , 85 , 170 , 204 , 240 }. Observe the
graph of the time-1 map of these six rules project
to almost all points on the unit interval [0, 1]. In
the limit, these points actually tend to a contin-
uum so that the time-1 map ρ1[N ] coincides with
the characteristic function χ1

N
. In this case, every

point φn−1 ∈ [0, 1] is a point on a periodic orbit of
N , and there are no transient regimes in these six
rules. We have therefore the following

Proposition. All dynamic patterns DN [x(0)] of
the six rules 15 , 51 , 85 , 170 , 204 , and 240 ,
belonging to the local equivalence class S1

4 are
invariant orbits.

5. Bernoulli στ-Shift Rules

In addition to the 98 rules we have listed so far (45
invertible period-1 rules in Table 3, 24 noninvert-
ible period-1 rules in Table 4, 17 invertible period-2
rules in Table 7, eight noninvertible period-2 rules
in Table 8, and four noninvertible period-3 rules in
Table 9) where we can predict their global long-
term dynamical behaviors, there are 112 additional
rules whose attractors can be precisely predicted by
invoking the remarkably simple symbolic dynamics
exhibited by the well-known Bernoulli shift map
[Tang et al., 1983; Nogashima & Baba, 1999]. In
particular, we will show in this section that the

evolution of each initial configuration of these 112
rules can be predicted by shifting it either to the
left, or to the right, by 1, 2 or 3 pixels, and possi-
bly followed by a complementation (i.e. change of
color).

5.1. Gallery of Bernoulli στ-shift
rules

Among the 256 CA rules listed in Table 2, there
are 112 rules, henceforth called “Bernoulli στ -Shift
Rules”, which have simple Bernoulli-shift dynam-
ics. They are extracted from Table 2 and reor-
ganized into three separate Tables. Table 10 con-
tains 84 invertible Bernoulli στ -shift rules, orga-
nized as members of 24 global equivalence classes
εκ

m, and listed column 1. Observe that the second
attractor (blue in Table 2) of the four period-3
rules

{
62 , 118 , 131 , 145

}
belonging to ε2

22 are
members of Table 10 and hence are also Bernoulli
rules. The four members of each equivalence class
are listed in columns 2–5. The color chosen for each
rule in these columns follows the same code for the
complexity index [Chua et al., 2002]. The index κ
for each class is listed in column 6. Since some rules
in Table 10 have 2 Bernoulli9 attractors, this infor-
mation is indicated by an “ ” sign in columns 7
and 8, depending on whether the forward time-1
map ρ1[N ](φn−1 �→ φn), or the forward time-2 map
ρ2[N ](φn−2 �→ φn) is required to represent the
attractor in order to uncover its Bernoulli-shift
attractor. The number of Bernoulli attractors for
each rule N is listed in column 9. The last col-
umn 10 provides an index of table number (13-1
to 13-9) where the characterizing features of each
equivalence class belonging to Table 10 can be
found.

Table 11 contains 20 noninvertible Bernoulli
στ -shift rules with two Bernoulli attractors, orga-
nized in the same format as Table 10. In this table,
all rules have two Bernoulli attractors. The relevant
Bernoulli στ -shift maps in this table consist of either
the forward time-2 map ρ2[N ](φn−2 �→ φn), or the
forward time-3 map ρ3[N ](φn−3 �→ φn).

Table 12 contains eight noninvertible Bernoulli
στ -shift rules with three Bernoulli attractors dis-
played in a similar format except for two new
columns replacing the former “attractor-number”

9To avoid clutter, we will henceforth refer to a Bernoulli στ -shift map, rule, or attractor simply as a Bernoulli map, Bernoulli
rule or Bernoulli attractor, respectively. We also abuse our language and use the same name “Bernoulli attractor k ”, k =1, 2,
3, to mean the kth family of attractors which share the same qualitative global dynamics, such as “shift left by 2 pixels”.
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Table 10. 84 Invertible Bernoulli στ -shift rules with one or two Bernoulli attractors.
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Table 11. 20 Noninvertible Bernoulli στ -shift rules with two Bernoulli attractors.

Table 12. 8 Noninvertible Bernoulli στ -shift rules with three Bernoulli attractors.

column due to space limitation. Observe that there
are four distinct Bernoulli στ -shift maps repre-
sented in Table 12, namely, the forward time-1,
time-2, time-3 and time-5 maps ρτ (φn−τ �→ φn),
τ = 1, 2, 3, 5.

In order to state the Bernoulli shifting algo-
rithm in an unambiguous way, we have collected all
those rules from Table 10 which evolve in accor-
dance with the same shifting mode into the same
group, and have identified each by a shift-mode
ID code BN [α, β, τ ] in column 1 of Table 13. All
Bernoulli rules from Table 13 obeying the same
ID code are listed in the rightmost column 5 of
Table 13. Since all rules having the same ID code
BN [α, β, τ ] exhibit a qualitatively similar power
spectrum, the spectrum of only the first mem-
ber N of each group is chosen as a prototype.
For example, N = 2 and 16 in Table 13-1, 11
in Table 13-3, 14 in Table 13-4, . . . and 62 in
Table 13-9. The power spectrum and the forward
time-1 map ρ1[N ](φn−1 �→ φn) from vignette N of
Table 2 are reproduced in columns 2 and 3, respec-
tively, of Table 13. In addition, the power spec-
trum from column 2 is partitioned into a low (red),
mid (green), and high (blue) frequency range in col-
umn 4, where various characteristic features of rule

N are identified and annotated. The bold color line
segments shown in some of the annotated spectrum
represent the average spectrum calculated over a
narrow range via a least-square method.

For some rules, such as 58 , 3 , 17 , 35 , . . . ,
etc., the forward time-2 map ρ2[N ](φn−2 �→ φn) is
plotted in column 3 instead of ρ1[N ](φn−1 �→ φn)
because it is this map which reveals its Bernoulli
character. Indeed, the forward time-1 maps of these
rules do not reveal any interesting features! The
hidden Bernoulli character of these maps emerges,
however, as soon as one glances at the τ = 2 char-
acteristic function χ2

N
.

A careful analysis of the forward time-τ maps
in column 3 of Table 13 shows that all points (red
dots) from the time-τ map (left frame) of vignette
N of Table 2 fall exactly on parallel light blue lines
with a slope

β ∈
{
±1

8
,±1

4
,±1

2
,±2,±4,±8

}
(36)

For reasons that will soon be obvious, we will hence-
forth refer to the parallel light blue lines of each
Bernoulli rule N listed in Table 13 as the Bernoulli
στ -shift map of N , even though only a subset of
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these lines belongs to the graph of the correspond-
ing time-τ maps. It is truly remarkable that the for-
ward time-τ map of all Bernoulli rules in Table 13
is always a subset of a Bernoulli στ -shift map with
τ ∈ {1, 2}. This amazing result can be confirmed
by exhaustive computer simulations of all 256 CA
rules.

A cursory examination of Table 13 shows that
some rules N , such as 11 , 14 , 56 , etc., occur
twice, one for each attractor in N . To distinguish
between these two attractors, we introduce an inte-
ger α ∈ {1, 2}, where α = 1 if N has only one
attractor, and α = 2 if it has 2. Let us summarize
the above coding scheme as follow:

The ID code BN [α, β, τ ] of each Bernoulli shift
mode in Table 13 is uniquely identified by three
parameters {α, β, τ}, where α ∈ {1, 2} denotes
the number of attractors in N , β (defined
in Eq. (36), denotes the slope of the Bernoulli
στ -shift map (parallel light blue lines), and τ
denotes the relevant forward time-τ map shown
in column 3.

Following exactly the same organization for-
mat, we reorganize the 20 noninvertible rules from
Table 11 into Table 14. Since all rules from Table 11
have two attractors, α ∈ {1, 2} in Table 14. Observe,
however, that unlike Table 13 where τ ∈ {1, 2}, we
now have τ ∈ {2, 3}. In other words, the red points
in column 3 are not merely copied from Table 2, but
must now be calculated.

Finally, the eight noninvertible rules in Table 12
are reorganized into Table 15. Since all rules belong-
ing to Table 12 have three attractors, we have
α ∈ {1, 2, 3}. As a departure from the previous
format, a new column 5 is added in Table 15 dis-
playing a typical dynamic pattern for each attractor
in order to demonstrate that the attractors have
qualitatively distinct characters, each one having
a different basin of attraction. Observe also that
τ ∈ {2, 3, 5} in Table 15.

5.2. Predicting the dynamic
evolution from {β, τ}

The dynamic evolution of any one of the 112
Bernoulli rules from Tables 10–12 can be predicted
uniquely from only two parameters in view of the
following theorem:

Theorem 1. στ -Shift Theorem
Let BN [α, β, τ ] be the ID code of Bernoulli

rule N . Let

st � {xt
0 xt

1 xt
2 · · · xt

I} (37)

denote any (I +1)-bit initial state (configuration)
and let

st+τ � {xt+τ
0 xt+τ

1 xt+τ
2 · · · xt+τ

I } (38)

denote the evolved state of N at time t + τ ,
τ = 1, 2, 3, . . .. Then st+τ can be derived from
the following:

στ -Shifting rule

Case 1.

β = 2σ > 0, τ = n, n = 1,2,3, . . .

(a) σ = 1, 2, 3, . . .

st+n is obtained by shifting st to the
left by “σ” pixels.

(b) σ = −1,−2,−3, . . .

st+n is obtained by shifting st to the
right by “|σ|” pixels.

Case 2.

β = 2σ < 0, τ = n, n = 1,2,3, . . .

Same as Case 1 but followed by comple-
menting the color of all pixels.

Proof. Due to space limitation, the formal proof of
this theorem will be given in Part V. �

Applying the στ -shifting rule from the above
στ -shifting rule theorem, we obtained the explicit
στ -shifting dynamics in Table 16 for each of the
112 Bernoulli rules from Tables 10–12. Each row in
Table 16 spells out the precise instruction for pre-
dicting the first, second, third, or fifth iteration of
any Bernoulli rule N (with ID code BN [α, β, τ ])
(from any initial state (configuration) st on any
attractor) corresponding to τ = 1, 2, 3, or 5, respec-
tively. If N has more than one attractor, one row
is devoted to each attractor and the appropriate
row to pick depends on which basin of attraction
does the initial state belong to. To predict the next
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τ -iteration from any binary bit-string initial state
(configuration) st on any attractor of any Bernoulli
rule N , one simply transcribes the dynamics spec-
ified from the entries marked by a “cross” ( ) in
row N .

Let us use this direct “read-out” procedure to
predict the attractor evolution dynamics of the four
Bernoulli rules N = 74 , 99 , 85 and 11 from the
dynamic patterns DN [x(0)] exhibited in Fig. 17.
Let st denote any row on the attractor regime (i.e.
pick t > Tδ) of these four patterns. The dynamical
evolution of 74 from st can be predicted by look-
ing at the first subrow (corresponding to attractor
α = 1) of row N = 74 of Table 16 and read out the
following precise evolution rules for 74 :

Shift string st to the left by 1 pixel to
obtain the first iteration st+1. (39)

Repeating the same procedure we obtain the same
pattern shown in the upper left corner of Fig. 17.

Similarly, if we go to the second subrow (cor-
responding to attractor α = 2) of row N = 99 in
Table 16, we would read out the following evolution
rule for 99 :

Shift string st to the right by 1 pixel to
obtain the first iteration st+1. (40)

Repeating the same procedure we obtain the peri-
odic pattern (after the transient regime) shown in
the upper right corner of Fig. 17, where the high-
lighted area denotes the attractor regime.

For N = 85 , we read out from row N = 85 in
Table 16:

Shift string st to the left by 1 pixel and
then complementing (changing color)
to obtain the first iteration st+1.

(41)

Repeating the same procedure we obtain the
dynamic pattern in the lower left corner of Fig. 17.

Finally, For N = 11 , we read out from sub-
row 2 (corresponding to attractor α = 2) of row
N = 11 in Table 16:

Shift string st to the right by 1 pixel and
then complementing (changing color) to
obtain the first iteration st+1.

(42)

Repeating the same procedure we obtain the pat-
tern in the lower right corner of Fig. 17.

The four Bernoulli rules chosen in Fig. 17 are all
described by a forward time-1 map ρ1[N ](φn−1 �→
φn); i.e. τ = 1. Consider next the four rules 74
(α = 2),10 3 , 6 , and 9 shown in Fig. 18 where
τ = 2.

For 74 , we go to the second sub-row of row
N = 74 in Table 16 to read out:

Shift string st to the left by 2 pixels to
obtain the second iteration st+2. (43)

Repeating the same procedure we obtain the same
pattern shown in the upper left corner of Fig. 18,
where only even rows are printed out for easier ver-
ification of the above evolution procedure. In order
to generate all rows, we would need to iterate also
from row st+1.

The other three patterns in Fig. 18 are obtained
by exactly the same read out procedure.

Finally, Fig. 19 shows the dynamic patterns of
four Bernoulli rules 74 (α = 3), 9 , 25 (α = 2)
and 25 (α = 3) with τ = 5.

To predict the periodic pattern of 74 (α = 3),
we go to the third subrow of row N = 74 and
read out:

Shift string st to the right by 3 pixels
to obtain the third iteration st+3. (44)

Repeating the same procedure we obtain the pat-
tern shown in the upper left corner of Fig. 19, where
only every third row is printed out for easier verifi-
cation. Clearly, in order to obtain the entire attrac-
tor, it is necessary to repeat the above procedure
from rows st+1 and st+2 as well.

To appreciate the predictive power of the
στ -shifting rule, it would be instructive to apply
Table 16 to all 112 Bernoulli rules exhibited in
Table 5 of Part II [Chua et al., 2003].

5.3. Two limiting cases: Period-1
and palindrome rules

Notice that σ = 0 is not included in the above
formulation of the στ -shifting rule. It is possible
to enlarge the class of Bernoulli rules significantly
by including σ = 0 as a limiting case without

10Although we have chosen the same rule 74 from Fig. 17, our initial state here belongs to the basin of attraction of attractor
α = 2.
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Fig. 17. Dynamic patterns of Bernoulli rules 74 , 99 , 85 , and 11 . The dimension of each pattern is 66 rows × 84 columns.



May 15, 2005 14:51 01299

A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part IV 1165

Fig. 18. Dynamic patterns of Bernoulli rules 74 (α = 2), 3 , 6 , and 9 . The dimension of each pattern is 66 rows × 84
columns. Only alternate rows n = 0, 2, 4, . . . are shown.
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Fig. 19. Dynamic patterns of the four Bernoulli rules 74 (α = 3), 9 , 25 (α = 2) and 25 (α = 3). Successive rows represent
three iterations in all cases except 25 (α = 3) where only every fifth iteration is printed. The dimension of each pattern is
66 × 84 for 74 (α = 3) and 25 (α = 2), 67 × 84 for 9 , and 65 × 84 for 25 (α = 3).
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changing the original statements of the στ -shifting
rule.

Limiting Case 1: β = +1 = 20

In this case, since σ = 0 and β > 0, both state-
ments (a) and (b) in Case 1 of the στ -shifting rule
imply that no pixel is shifted either left or right. In
other words, any point on an attractor of N which
follows the στ -shifting rule with β = +1 is a fixed-
point, and hence a period-1 attractor. Conversely,
any period-1 point on a period-1 attractor satisfies
the στ -shifting property with σ = 0. We can thereby
conclude:

Corollary 1. The dynamics of all period-1 rules
from Tables 3–6 satisfies the στ -shift rule with
σ = 0, for all period-1 initial states.

Limiting Case 2: β = −1 = −20

In this case, since σ = 0 and β < 0, both statements
(a) and (b) in Case 2 of the στ -shifting rule are
satisfied, implying that although any initial state
st on an attractor does not shift its position, it
changes sign in each iteration. This implies that st is
a period-2 point. The converse, however, is not true.
In fact, only certain rather special period-2 pat-
terns exhibit the above “sign-alternating” property.
In particular, the following result can be proved
to be the only period-2 rules satisfying limiting
case 2:

Corollary 2. Period-2 Palindromes: All period-2
rules which obey the στ -shift property are necessar-
ily palindromes in the sense that any initial config-
uration string st corresponding to an attractor must
be symmetrical with respect to the center of st.11

Among the 25 period-2 rules listed in Tables 7
and 8, only the seven bilateral rules { 19 , 23 , 50 ,
51 , 55 , 178 , 179 } are palindromes and only
these seven rules obey the στ -shift property with
β = −20.

5.4. Resolving the multivalued
paradox

A cursory glance of Tables 13–15 reveals that
the graph of the forward time-τ map ρτ [N ] of all
Bernoulli rules with β < 1 (equivalently, σ < 0)12

is a subset of a multivalued function consisting
of 2|σ| parallel straight lines with slope equal to
β = 2−σ , σ = 1, 2, 3. This observation seems to
contradict the fact that all time-τ maps must be
single-valued functions on the unit interval. This
paradox can be resolved by observing that every
point on the graph must project to a different point
on the horizontal axis. In other words, if we draw
very thin projection lines through all points on the
graph, as in Figs. 3–7, these lines will merely inter-
leave each other. This will always be the case even as
I → ∞; namely, between every two projection lines,
there will be more lines, sandwiched in between, ad
infinitum. It is mind boggling to imagine a function
with such an intricate structure [Niven, 1967]. How
can one guarantee the iteration of such Bernoulli
rules for large values of I can be reliably carried
out on a computer? How can one be sure that the
inevitable computing errors due to truncation will
not affect the outcome for large values of I?

The answer to the above questions comes from
our στ -shifting rule. For |β| < 1, st+1 is always
obtained by shifting st to the right by |σ| = 1, 2 or
3 pixels. Hence every bit of st will eventually arrive
at the right boundary located at φn−τ = φend ≈ 1.0
(depending on I). If the end bit is equal to a “1”,
such as

φt = 0•001010 · · · 0101 (45)

then the στ -shifting rule and the periodic boundary
condition in Fig. 1 imply (assuming |σ| = 1) the
following unambiguous outcomes:

φt+1 = 0•1001010 · · · 010 (46)

φt+2 = 0•01001010 · · · 01 (47)

φt+3 = 0•101001010 · · · 0 (48)

...

etc.

It is now clear that the rightmost bit at time t
determines the leftmost bit at time t + 1, assum-
ing |σ| = 1. Hence, there is never any loss of
accuracy because the computation is discrete, not
continuous.13

11The palindromes st in Corollary 2 are assumed to be represented as binary bit strings. Corollary 2 is also true for a decimal
st as I → ∞.
12For each Bernoulli rule BN [α, β, τ ] with β = 2σ > 0, its bilateral twin B

N† [α, β†, τ ] has β† = 2−σ < 1.
13Assuming the computer has a sufficiently long word length.
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It is instructive to illustrate the above right
shifting rule on rule 240 whose characteristic func-
tion χ1

240
is shown in Fig. 4(b). Now recall the first

few digits of the decimal expansion of a binary bit
string

→x = [x0x1 · · · xI−1xI ] (49)

is given by Eq. (13); namely,

φ =
1
2
x0 +

1
4
x1 +

1
8
x2 + · · · + 1

2I
xI−1 +

1
2I+1

xI

= 0.5x0 + 0.25x1 + 0.125x2 + · · ·
+

1
2I

xI−1 +
1

2I+1
xI (50)

It follows from Eqs. (49) and (50) that if the left-
most bit is a “0”, i.e. x0 = 0, then φ < 0.5 and the
lower straight line (with slope β = 1/2) in Fig. 4(b)
for 240 will be selected. On the other hand, if the
leftmost bit is a “1”, i.e. x0 = 1, then Eq. (50)
implies that φ > 0.5 and hence the upper branch in
Fig. 4(b) will be selected.

In other words, if the end (rightmost) bit is
xt

I = 1 at time t, then the Bernoulli σ1-shifting
rule of 240 will shift the end bit “1” to the right,
thereby reappearing as the first bit in the next iter-
ation in view of the periodic boundary condition
indicated in Fig. 1(a). Since the first bit in the next
iteration now reads xt+1

0 =1, we have φt+1 > 0.5
and the dynamics must follow the upper branch of
χ1

240
. Conversely, if the end bit is xt

I = 0, then the
Bernoulli right shifting rule for 240 will shift the
bit “0” to make the first bit equal to xt+1

0 = 0 in
the next iteration, and the dynamics must follow
the lower branch of χ1

240
.

The right shifting rule of 240 dynamics
described above is illustrated with the help of
the Lameray (cobweb) diagram shown in Fig. 20.
Observe that the two points 1© and 6© are extremely
close to each other. The decimal coordinate

φ0 = 0.673768048097057 . . .

of point 1© is calculated from the following 66-
bit string (the same I = 65 is used throughout
Figs. 3–7)

101011000111110000010000000100111010101010100111010110010101110101

via Eq. (50). Observe the end (rightmost) bit of
the above bit string is a “1”. To obtain the next
iteration via the σ1-shifting rule for N = 240 in
Table 16, we simply shift the above bit string by
one pixel (since τ = 1) to the right (since σ< 0),

which, in view of the periodic boundary condi-
tion depicted in Fig. 1(a), is equivalent to insert-
ing a “1” at the leftmost position of the above
right-shifted string to obtain the following 66-bit
string

110101100011111000001000000010011101010101010011101011001010111010

in the next iteration, whose decimal value (calcu-
lated from Eq. (50)) is equal to

φ1 = 0.836884024048529. . .

It is truly amazing that while the two decimal num-
bers φ0 and φ1 above reveal no discernible rela-
tionship between them, their binary codes betray
the hidden secret of rule 240 as simply a trivial
Bernoulli right shift of one pixel!

Note the cobweb diagram starting from the
nearby point 6© evolves into an entirely different
orbit, a manifestation of extreme sensitivity. Indeed
it is well known that the Bernoulli shift (for I → ∞)

is as chaotic as a coin toss, [Nagashima & Baba,
1999] and its chaotic attractor has a Lyapunov
exponent [Devaney, 1992]

λ = β = 2 > 1 (51)

To understand how the outcome of the Bernoulli
rule 240 emulates an ideal “coin toss” Gedanken
experiment, let us look at the evolution of the
“inverse” Bernoulli rule 170 which must have iden-
tical dynamics,14 as I → ∞.

The characteristic function χ1
240

: [0, 1] → [0, 1]
of the Bernoulli rule 170 in Fig. 4(a) can be

14For an infinitely long bit string (I → ∞), it is more illuminating to show that there is a one-to-one correspondence between
the iterates of the Bernoulli rule 170 and the outcome of an ideal coin-toss.
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Fig. 20 Cobweb diagram of Bernoulli rule 240 showing a succession of ten iteration points 1©, 2©, 3©, . . . 9©, �10 undergoing
the σ1-shifting evolution dynamics. Points 1© and 6© appear as a single point since they differ by only 0.003537.

described analytically by

χ1
170

= 2 φ 170 mod 2 (52)

for all φ 170 ∈ [0, 1]. This means that every point of
the unit interval [0, 1] corresponds to a semi-infinite
binary bit string:

[x0x1x2 · · · xi · · · xI−1xI ]
�→ 0•x0x1x2 · · · xI−1xI (53)

where I → ∞.
Now since, except for a set of measure zero (cor-

responding to the set of all rational numbers), every
point in (0, 1) is an irrational15 number [Niven,
1967] whose binary expansion can be identified with
a particular coin toss experiment, the ensemble of
all possible ideal coin-toss experiments must cor-
respond to the set of all points on [0, 1]. Hence,
to exhibit any member of this coin-toss ensemble
using the Bernoulli rule 170 , we simply choose an
arbitrary point from the unit interval [0, 1]; namely,
Eq. (53), and apply the Bernoulli left shifting rule

σ1[ 170 ] to read out the first digit xt+n
0 from each

iteration t + n, n = 1, 2, . . . ,∞. The outcome of
this binary output string is clearly a member of the
ideal coin-toss ensemble. It is in the above sense of
a Gedanken experiment that we claim the Bernoulli
rule 170 , and its inverse rule 240 , is as chaotic as
an ideal coin toss, as I → ∞.

It also follows from the above discussion that
the Bernoulli rules 170 and 240 are both ergodic
[Billingsley, 1978] in the sense that the iterates
φ1, φ2, . . . , φt from almost every initial state φ0 ∈
[0, 1] would visit every point, infinitely often, on the
two parallel lines (with slope β = 2 for 170 and
slope β = 1/2 for 240 ) of the characteristic func-
tions χ1

170
and χ1

240
in Fig. 4 as t → ∞. This is the

reason why the time-1 map ρ1[170] and the char-
acteristic function χ1

170
(resp. ρ1[240] and χ1

240
)

are identical functions. In other words, there are no
gaps in the graph of ρ1[170] .

An examination of Table 2 shows that there are
two other Bernoulli rules whose graphs also coincide

15The hallmark of an irrational number is that its binary expansion in Eq. (53) contains every possible finite sequences of bit
“0” and bit “1” infinitely often [Billingsley, 1978].
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with their characteristic functions; namely, rule 15
and 85 . An examination of Table 2 shows that only
four out of 112 Bernoulli rules are ergodic over the
unit interval [0,1]. All other Bernoulli rules have
gaps,16 as is evident from their graphs (indicated by
red or blue dots) in Tables 13–15.

The four ergodic Bernoulli rules 15 , 85 , 170 ,
and 240 are invariant in the sense that their orbits
are invariant orbits (recall Sec. 4.4). Observe that
although their characteristic functions χ1

N
have

only two fixed points, there are infinitely many fixed
points χτ

N
as τ → ∞. This follows from Eq. (54)

(for 170 ) that the graph of the τth-iterated char-
acteristic function

χτ
170

= 2τ φ 170 mod 2 (54)

consists of 2τ parallel lines with slope β = 2τ .17

Since each intersection of these lines with the main
diagonal is a fixed point of χτ

170
, it follows that

as τ → ∞, the number of fixed points tend to
infinity. Note, however, that the fixed points of all
Bernoulli rules with β > 0 are unstable because the
slope of their characteristic function at these points
have a slope β > 1. Hence, unless one chooses the
exact coordinates of these fixed points, they are not
observable. Such fixed points are therefore said to
be not robust.

6. Predictions from Power Spectrum

The graph of the time-1 map of each attractor in
Table 2 is derived using a randomly-generated ini-
tial configuration. The fact that the same graphs are
generated as long as the random configurations are
in the corresponding basins of attraction confirms
the validity of using randomly-generated bit strings
as “probing” inputs [Wiener, 1958]. In addition to
providing the graphs of both forward and backward
time-1 maps for each vignette in Table 2 we have
also recorded the power spectrum for the forward
time-1 map ρ1[N ] and displayed it in the center
frame of each vignette. The spectra of the period-1,
period-2 and period-3 rules in Table 2 do not pro-
vide any new information. They merely confirm the
periodicity of the attractors. In this final section, we
will examine the spectra of the 112 Bernoulli rules
in Tables 10–12.

6.1. Characteristic features of
Bernoulli rules

The power spectrum of one prototype member of
each group BN [α, β, τ ] of Bernoulli rules having
identical Bernoulli σ1-shift maps is displayed in
Column 2 of Tables 13–15, respectively. A careful
analysis of these spectra reveals certain generic fea-
tures of all Bernoulli rules belonging to each of the
34 distinct groups BN [α, β, τ ] listed in Table 13–
15. Such generic features include the presence of
various robust periodic modes, as well as the rate
of increase or decrease of the power spectrum at
various frequency ranges. This information is high-
lighted and annotated in column 4 of each group in
Tables 13–15.

The presence of a sharp spike at some fre-
quency fp indicates that the Bernoulli rule has a
robust natural oscillating mode at this frequency.
As a demonstration of its prediction ability, Fig. 21
shows the power spectrum of Bernoulli rules 14
and 81 . An inspection of these two spectra reveals
a spike at f = 1/4 in both cases. These spikes imply
the presence of a stable and hence robust period-
4 point. The location of the four period-4 points
of 14 are identified on the characteristic function
χ1

14
, in Fig. 22(a). Observe that the points on the

two attractors associated with B 14 [1, 2, 1] (red) and
B 14 [2,−1/2, 1] (blue) of the Bernoulli rule 14 in
Fig. 21, are found at the tip of a sub-group of vertical
lines in Fig. 22(a), as expected. Observe that there
are many points in Fig. 22(a) which do not lie on the
attractors. Here, we have superimposed the two red
parallel lines from Fig. 21 where attractor 1 resides,
and the two blue parallel lines where attractor 2
resides onto χ1

14
in Fig. 22. It is interesting to note

that although the four period-4 points 1©, 2©, 4©, 3©
in Fig. 22 lie at the intersection of these two sets of
parallel lines, they are not a part of attractors 1 and
2 because points belonging to two different attrac-
tors cannot intersect, by definition of an attractor.

Note that it is generally not possible to identify
period-τ points of N directly from the characteris-
tic function χ1

N
unless τ = 1. A much more effec-

tive way to search for period-τ points of any rule
N is to plot the graph of the τth-iterated charact-
eristic function χτ

N
and look for points on χτ

N

which lie on the main diagonal χτ
N

= φN . As

16We conjecture that the set Λi[N ] corresponding to each attractor α of all noninvariant Bernoulli rules are Cantor sets
[Alligood et al., 1996].
17See B 25 [2, 8, 3] in Table 15-1 for an example when τ = 3.
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(a)

(b)

Fig. 22. Characteristic function χ1
14

(top) and time-1 map ρ1
14

(bottom) of Bernoulli rule 14 .
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(a)

(b)

Fig. 23. Fourth-iterated characteristic function χ4
14

(top) and time-4 map ρ4
14

(bottom) of Bernoulli rule 14 .
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an illustration, we plot χ4
14

in Fig. 23 (top) and
note that indeed there are four points, labeled
1©, 2©, 3©, and 4©, which lie precisely on the main
diagonal, and the coordinates of these four points
are precisely those identified earlier in Fig. 22, as
expected. It is even more illuminating to examine
the time-4 map ρ4[14] of 14 , shown in the bot-
tom of Fig. 23. This is a map showing ρn−4 �→ ρn,
i.e. only every fourth iterates of χ1

14
are printed.

Observe that, by definition, all points of χ4
14

must
lie on the 16 parallel lines of slope β = 24 = 16 for
attractor 1, and β = 2−4 = 1/16 for attractor 2.

Observe that although we were able to iden-
tify the precise location of the four period-4 points,
we would not have undertaken the time-consuming
procedure had we not known that a period-4 point
must exist for both Bernoulli rules 14 and 81 . The
power-spectrum therefore provides valuable clues on
what to look for.

6.2. Turing-universal rules:
{ 110 , 124 , 137 , 193 } exhibit
1/f power-frequency
characteristics

A careful examination of the power spectrum of all
256 rules in Table 2 reveals that the four globally-
equivalent Turing universal rules 110 , 124 , 137 ,
and 193 , and only these four rules, exhibit a
1/f power-frequency characteristics with a slope
equal to approximately −1.5, as exhibited in
Fig. 24 [Schroeder, 1991]. This interesting observa-
tion suggests that there might exist a fundamental
relationship between universal computation and the
ubiquitous 1/f phenomena.

7. Concluding Remarks

We have completely characterized the long-term
(time-asymptotic) behaviors of 206 one-dimensional
CA rules with three inputs. Each CA rule can have
several attractors and invariant orbits. A single ran-
domly chosen initial state (configuration) is used as
a probe to determine uniquely the precise charac-
teristics of the attractor whose basin of attraction
contains the “probing” random configuration.

A CA rule N is either bilateral (when T †[N ] =
N), or nonbilateral. It can be either invertible (when
its forward and backward time-1 maps are sym-
metrical with respect to the main diagonal) or
noninvertible.

There are 45 invertible and 24 noninvertible
period-1 rules. Each period-1 rule generally has a
continuum of period-1 attractors (as I → ∞), clus-
tered along the main diagonal. Among the period-1
rules, there are 12 rules which always tend to the
homogeneous “0” attractor, and another 12 rules
which always tend to the homogeneous “1” attrac-
tor, regardless of the initial state (configuration),
except for the isles of Eden states possessed by 40 ,
96 , 235 , and 249 .

There are 17 invertible period-2 rules all of
which are bilateral. There are also eight noninvert-
ible period-2 rules, all of which are nonbilateral.
Each period-2 rule generally has a continuum of
period-2 attractors (as I → ∞), clustered symmet-
rically with respect the main diagonal.

There are four nonbilateral period-3 rules which
can be either invertible or noninvertible.

There are 112 Bernoulli rules whose asymp-
totic behavior is completely characterized by a
στ -shifting rule.

The period-4 attractor exhibited by 14 and 81
represents a very interesting bifurcation point sepa-
rating two distinct attractors that warrant further
in-depth analysis.

The remaining 50 rules consist of 18 nonin-
vertible but bilateral rules (listed in Table 17) and
32 noninvertible and nonbilateral rules (listed in
Table 18). The qualitative long-term dynamics of
these rules will be studied in Part V.

An in-depth analysis on the characterizations
of the long-term behaviors of these rules represents
challenging future research problems. By invok-
ing the global equivalence principle developed in
[Chua et al., 2004], the above list of 50 currently
intractable rules reduces to the study of only 10
noninvertible but bilateral rules and only eight non-
invertible and nonbilateral rules.

A compendium of the characteristic proper-
ties and relevant data of all 256 CA rules are col-
lected in Table 19. Except for the 18 rules listed
in Table 17, the attractors of all bilateral rules
have been completely characterized and annotated
in appropriate columns of Table 19. In addition,
all invertible attractors of CA rules are completely
characterized. Such attractors are closely related to
the time-reversal concept from physics, and will be
discussed in-depth in Part V.

It is important to emphasize that Table 19 can
be used to predict, by inspection, the global asymp-
totic dynamics (as t → ∞) from any initial state
(configuration) belonging to any robust attractor
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Table 17. 18 Noninvertible bilateral rules.

Table 18. 32 Noninvertible nonbilateral rules.
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listed in this table. Moreover, for the six “orbit-
invariant ” rules 15 , 51 , 85 , 170 , 204 and
240 , Table 19 actually predicts their complete
dynamical evolutions over all times, i.e. both tran-
sient and steady state regimes, and for all initial
states. This follows by default because all orbits of
these six rules are invariant, and therefore do not
have a transient regime.

The main result of this paper is no doubt the
gallery of graphs of both forward and backward
time-1 maps of all 256 CA rules. Since these graphs
do not depend on the initial state (configuration),
they completely characterized the long-term asymp-
totic behaviors of all rules, including the 50 complex
rules listed in Tables 17 and 18. They are, in some
sense, the generalized Green’s functions for cellular
automata.

Perhaps the most intriguing unsolved problem
is to discover the relationship between the four
Turing-universal rules 110 , 124 , 137 , and 193 ,
and the ubiquitous 1/f power spectrum exhibited
by these four rules, and only these rules.
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