CELLULAR NEURAL NETWORKS WITH NONLINEAR AND DELAY-TYPE
TEMPLATE ELEMENTS

Tamas Roska® and Leon O. Chua

Department of Elecrrical Engineering and Computer Sciences and the Electronics Research Laboratory, University of California, Berkeley,
CA 94720
* on leave from the Computer and Automation Institate of the Hungarian Academy of Sciences, Uri-u.49, Budapest, H-1014

ABSTRACT

The cellular neural network (CNN) paradigm is a powerful framework for analog nonlinear
processing arrays placed on a regular grid. In this paper we extend the current repertoire of CNN cloning
template elements (atoms) by introducing additional nonlinear and delay-type characteristics. With this
generalization, several well-known and powerful analog array-computing structures can be interpreted as
special cases of the CNN. Moreover, we show that the CNN with these generalized cloning templates has
a general programmable circuit structure with analog macros and algorithms. The relations with the
cellular automaton (CA) and the systolic arrays (SA) are analysed. Finally, some robust stability results
-and the state space structure of the dynamics are presented.

1. INTRODUCTION

The cellular neural network (CNN) paradigm [1] provides a powerful analog nonlinear computing
structure for a variety of array computations. Array computations can be defined as the parallel execution of
complex operations on a large number of processors placed on a geometrically regular grid. If the operations
are logical (involving only a few bits) the classical cellular automaton (CA) of John von Neumann and its
recent variants are the ideal tools. If the operations are numerical (typically 8, 16 or 32 bits) the systolic arrays
are the best current approach. In both cases the computing devices are digital processors. If, however, the
signal values are continuous and/or analog real-time operations are performed, then the CNN is the optimal
solution with respect to both area and speed. Its structural simplicity, robust stability and function variability
are all ideal for VLSI implementation [2,3,4].

Inthis paper we show that by retaining all the important features of the original CNN structure and by
introducing very simple nonlinear and delay-type templates, the CNN becomes a powerful framework for
general analog array dynamics.

From atheoretical point of view it has well defined qualitative properties and it contains, as special
cases, a variety of powerful practical image processing solutions (both artificial and biologically motivated
applications, e.g. the "silicon retina" and other resistive grids [5,6,7,8,9]. From a practical point of view it
provides a natural paradigm for designing programmable analog VLSI or opto-electronic real-time computing
arrays.

In Section II we present the general framework and show the simple programmability properties
inherent in the CNN structure. In Scction III we present some special cases which are practically important
and promising. Insection IV we show that our CNN is a general programmable analog array computer. With
their simplest template clements (atoms), like the gates, we can define the CNN templates as macros and
introduce the notion of CNN algorithms based on these macros.

In Section V' we present some robust stability results for a class of nonsymmetric nonlinear CNN
templates, aswell as some other qualitative properties. In Section VI we summarize our conclusions and pose
some open questions and new directions.
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II. THE GENERAL CNN FRAMEWORK WITH NONLINEAR AND DELAY-TYPE TEMPLATES

Consider a two-dimensional grid, such as those shown in Figure 1. The small squares represent the
processors and their connections show the possible communication lines (feedback and feed forward
connections) with their neighbors. Here, the solid lines correspond to the nearest neighbor interconnections.
This two-dimensional grid of processors is called a layer. Multiple layers of processors are also allowed and
can be defined similarly as the multilayer cellular neural networks in [1].

The analog processor element, the cell, is shown in Figure 2.1t differs from that of the original cell
(Figure 3 on p. 1258 in [1]) basically in the controlled sources Ixy and Ixu only.

Namely, instead of the two linear controlled sources defined by

AGij;kvy,  and  B(ijikDvy,

associated with a typical cell Cij and a typical interacting cell C,,, we allow nonlinear and delayed controlled
sources defined by

A
T
A i Cykiovyii) AT aYyea(t - ©)
and A
T
Bij ;kl(vukl ’vuij) + B ij ;klvukl(t- )
That is, instead of having a linear VCCS (voltage controlled current source) in the A and B cloning
templates, we now have a nonlinear and/or delay-type VCCS. The structure of the nonlinearity in the

templates is also important: it is a function of at most two variables, namely, the output voltage of cell Cil. and
that of a neighbor C,,.

We also allow the output function to have a wider range of output voltages so that the saturation
voltage is +K instead of +1. However, these slight changes does extend the class of CNN dynamics
significantly.

Again, with MxN cells in an array, we define the r-neighborhood of the cell Cij as

N (ij) = { Cy;: max (|k-i},]1-j]) = r (integer)} (1)

Let us now formulate the canonical equations describing the CNN analog nonlinear processor array
with nonlinear and delay-type templates. Henceforth, we will use the same term CNN in this generalized
concept and refer to a linear template CNN when only linear controlled sources are being used in the cloning

templates. Without loss of generality we assume that the processor cells are drawn on a rectangular grid with
MxN cell units, 1<i<M, 1<j<N.

Referring to Figures 1 and 2, we can define a CNN mathematically as follows:
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Cyr1 ENL(i]) Cr1 € NL(i]) (2a)

where A, Band A%, B are associated with the nonlinear and the delay-type cloning templates, respectively.
In particular, Aij;kl’ Bij K are continuous functions of at most two variables and the Atij;kl, Btij;kl are real
constants.

For example, with d =c1(exp(vykl) -1), d2=c2(vykl —vyij) the cloning templates can be defined
symbolicaly as the two nonlinear cloning templates

[o d10"[ o o o7
A ! 2
A = dl 2 dl g B = g d2 1 d2
[o 4 o | [o o o]

and I=0.

Here, we have tacitly assumed that the templates are space invariant, though, they could be space
variant too. Henceforth, we use space invariant templates.

2,0u uation

The memoryless output function

vyij(t) = f(inj(t)) (2b)

is depicted on Figure 3.1t isa piecewise-linear characteristic with unity slope in the range (-K, K), K>0. It
can be approximated to within any precision by a smooth (Cl) strictly monotone-increasing sigmoid function.
This approximation is sometimes desirable in analytical proofs where the C! condition is more convenient to
work with. It is also a more realistic assumption since the physically realized characteristic is actually C.

As afurther generalization, we can allow the output function to have its own dynamics, too. For example,
Eq.(2b) can be replaced by a first-order state equation

vyij = 'Vyij + f(inj(t)) (2bﬁ

or by a higher-order state equation.

Moreover, remaining monotone increasing, f might be more complicated.
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vuij = Eij (26)
4. Constraint equations:

lvyij O] <1 (24)
|vuij| <1 (2e)

5. Parameter assumptions:
K > 0, c >0, R, >0, Tt >0 (2g)

A A
In the case when Aij'kl’ Bij-kl are linear functions (of a single variable) and = =0 or, equivalently,

ij;k1 = Aij;k1 Vykl

o> >>

ij;kl = Bijik1 Vua
and ATij;kl, BYij;kl are equal to zero, we have the original CNN [1] with linear cloning templates.

Observe that the structure of the original CNN is retained and that the nonlinear as well as the delay-
type cloning template funtions are both voltoge controlled current sources (VCCS). These properties are very
useful to the circuit layout and the software programmability of the various representations of this quite
general CNN architecture. These important practical considerations will be discussed in detail in Section I'V.

As to the information processing or computing function of the CNN array, it has two input ports and
one output port per cell. Namely, besides the generic input Eij(t) =vuij(t) the initial value of the state, i. e.
'
Xij
snapshot at a given time instant t=T, i.e. v ; +(T). In the former case, the successive inputs can be applied in

(0), can also be used as an input. The output Vyij(t) is defined as either the dc steady state vyij(oo), orasa

asampled- data mode allowing a sufficient settling time to elapse between the samples. Itis clear that the
most direct application area of the CNN is in image processing (where the light intensity of the pixel Iij is the
input). However, other applications such as solving special types of partial differential equations are also
potentially important. Even the two input possibilities can be combined, e.g.for processing successive images
of a motion picture. Usingthe AY, BY delay-type templates some forms of successive (moving) images can
be generated within the CNN.

In picture processing applications the gray-scale image pixel values are coded between +1 and -1,
which correspond to black and white extremes.

Let us derive next an estimate for the dynamic range.

Proposition 1
For a CNN characterized by bounded nonlincar cloning templates (but without delay) and a memoryless
piecewise-linear output equation (Eq.(2b)) in the canonical equations (2), all states Vy; are bounded for all
time t>0 and the bound vmax can be computed by the following formula:
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A A
Voax = 1+ Ry |I| + R.K max| Z (maxlAij;kll + max|Bij;k1|)] (3)
C € N (if)
l<i<M, 1<j<N

The proof follows the same way as in Section III of [1] except that the bounds |A Wl and |B.
replaced by max|A kll and max]B ldl) and the bound for Vi (t) is equal to K (instead of 1)

ij; kl| are

III. SOME IMPORTANT SPECIAL CASES

As we have mentioned in the introduction, a CNN with nonlinear and delay-type cloning templates as
defined by the canonical equatious (2) can be considered as a unifying paradigm for analog nonlinear
processor arrays where the processors are placed on a regular 3-dimensional geometrical grid. One layer of
this arrayis placed on a two-dimensional regular grid (see Figure 1). We will now describe some important
special cases:

Special Case 1: Nonlinear resistive grid (with capacitors)

Several recent analog processor arrays which mimic the vertebrate retina {5, 6] or some functional model of
the visual process [8] make use of the circuit structure depicted in Figure 4. Obsrve that this structure is a
simple special form of the CNN defined in Section II.

Namely, choose

1=0, At = B' =0
Choose I =I =B..
Xu b ij;ij i}
[o 0o 0] o o
A z A _
so that B = [é 1 0 in Fig.4(a) or B=[0 1 01 in Fig.4(b)
0 00 L9
Choose Vyij = f(vxij) with K>>1
~
A1J Kkl = =GWw)or0; G=¢G (Vykl'vyij)’
0 G 0] ‘G G
A | N ~ R
so that A={G O Gt in Fig.4(a) or A=[G 0 G} in Fig.4(b)
0 G 0 J Q,_,‘,‘.G_/

The nonlinear resistor v-i characteristics can be defined according to the various applications [5-9, 16].
The type of "fading" resistor characteristics of Figure Sis used in several vision related applications having
different names (e.g. resistive "fuse”, etc.).

We wish to emphasize that the CNN defined here can gperate in two modes; namely, either in transient
mode or in dc steady state mode. In transient mode the output is the snapshot at a given time instant t=T (e.g.
in the scale-spacing method associated with the anisotropic diffusion equation [8]). In the dc steady-state
mode the output is the dc steady-state of the circuit. Equivalently, we can choose the speed of the input to be
much smaller than the settling time of the circuit (e.g., speed is choosen equal to the reciprocal time constant

in [6]).
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Special Case 2: linear resistive grid without dynamics

Choose K>1, ¢=0, A' =B"=0
"N ~
or
»

N
Bijika = Bij;x1 Vukg and A=0
A Gabor transform can be calculated this way.

Similarly, many other interesting special cases can be generated (e.g.in case of motion estimation,
etc.).

Remark 1

The above cases are special cases, indeed. The choice of many different resistive grids with other nonlinear
characteristics like square, square-root, absolute value, etc.; can lead to many interesting results.

As an gxample consider the input picture of Figure 6. This picture is applied as the initial state (vx].j(O))
to a connected component detection CNN with the following linear templates on a square grid

foo o7
| A
A= ] 1 2 -1 | B =0 I=0
L 0 0 0}

The output vyij(oo) shown in Figure 7(a) gives the number of connected components when Figure 6 is
projected along the horizontal axis. Now, suppose we choose next

fo o0 o0 (o 1 0

~ } A

A= } 1 2 -1 B=20 I=0 A*={0 1 0 B* =0
[0 0 0 01 0

t = dh whenh=1 isthe time step unit and d=3. Hence t=3. The output shown in Figure 7(b) gives a
combination of a connected component detector and a vertical line detector with a delay. This new CNN
therefore gives a qualitatively new image processing effect.

All these calculations were performed by usig the CNND simulator program [15] running on an IBM
PS/2 Model 60 computer.

IV. CNN AS ANALOG PROGRAMMABLE COMPUTING ARRAYS

We can compare the input and the gpecification of a cellular automaton, a systolic array, and a cellular
neural network as follows:



- 18—

CA SA CNN
Cellular automaton Systolic array Cellular neural
network
Input logic values numerical values analog values
(1-4 bits) (8-32 bits)
Specifi- truth table numerical algo- cloning temp-
cation rithm lates

The relations between a CA and a CNN with linear cloning templates has been studied in [13].

The computing efficiency in terms of finite area/time/dissipation varies from problem to problem. All
three clases of arrays have their own advantages and disadvantages.

A crucial problem, however, is the programmability question. Both the CA and the SA can be
programmed easily. The programmability of the CNN may not be obvious. We will show that due to its simple
current-additive structure (even with nonlinear and delay-type templates), the CNN is in fact a programmable
analog VLSI array computer.

The basic building blocks (atoms) of the CNN are the coefficients in the cloning templates, namely,

N & T T

Ajjikl Bijikl ATi5k1 B ikl I
These coefficients are realized by voltage-controlled current sources (VCCS). Note that I can be considered as
a VCCS with a constant controlling voltage.

For example, in the cloning templates

X JO 4 07

A
A dIZdIJ; B=0; TI=1.5; A*=B"=0

The basic building blocks are the nonlingar controlled sources d; and the linear controlled sources A ; ; = 2

and I=1.5.

These analog template atoms are really programmable since each additive constant term can be easily
selected by switching on or off the relevant component from a bank of parallel connected linear and nonlinear
controlled sources.

The cloning template is built up from the above template atoms, thereby forming an elementary
processing function or an analog macro instruction.

The sequential or parallel applications of these analog macro instructions or cloning templates
constitute the analog algorithm or analog software of the CNN. In fact, this notion of the software is in good
agreement with both the basic physical meaning [16] and the recursive function analogy [17]. Hence, the
following correspondence gives not only a clear structure of the hierarchy of both types of computation, but,
also its engineering realization.
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analog CNN digital CA or SA
algorithm
sequence of templates (series recursive function/algorithm
or parallel) -analog software /software
network
cloning template machine instruction
analog "macro" macro
Pphysical circuit
cloning template atom "gate"

Programmability: software - electrical - physical (VLSI mask)

Finally, we remark that in some recent practical applications various cloning template sequences are
used succesfully for different tasks and even the analog and digital funtions can be used jointly in a dual
computing structure [15, 17].

V. SOME QUALITATIVE PROPERTIES

The canonical equations (2) describe the dynamics of the CNN. In order to apply specific qualitative
results from dynamical systems theory, it is convenient to reformulate these equations in a closed vector-
matrix form. Without loss of generality, suppose, R =1, C=1and M=N.

In the case of linear cloning templates we have the simple form
s - L L
Xx_sz+AYy+Byu+I 4)
N* -1 . 2
where Xx(t)’ gy(t), yu(t) e R' x R (i.e. N° vectors)
2
Ie RN with all elements equal to I
U is an N’xN? unit matrix

v, = £(y,) is a diagonal mapping with vy = f(vy)
AL, Bl ¢ RNg“NL (i.e. N2xN? matrices)

We have N? cells, i.e. N?elements in the vectors. The question is how to order them. Figure 8 shows
three possibilities ((a),(b) and (c)) for the case of a square grid with N=5. Observe that many nearest
neighbor cells will not be placed next to each other in this reordering. For example, for the three reorderings
in Figures 8(a),(b) and (c), the nearest neighbors can be found in the vectors as far as the following index
distances from each other:

N+ 1, 2N - 2 and 2N -1 (5)

For example, we have 13-7=6 in Fig.8(a), 19-11=8 in Fig.8(b), and 15-6=9 in Fig.8(c).
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For example, consider the linear cloning template

0 py O
A=|py 2 pg ; B =0; I=20; (6)
0 pg O

and choose the diagonal ordering of Figure 8(b). The AL matrix associated with this ordering is shown below
where the entries in some selected rows and columns are given:

1 2 3 4 5 6 ...... g 10 11 ....... 19....... 25
- 3
112 Pg Pg
2 |py 2 Ps Pg
31pen 2 pg Pg
4 Py 2 Pg Pg
5
6
Al= 9 2
Pw PN )
10 PN 2 pg
11 PN 2 Pg
19 Pw 2
25 | 2

The selected rows are complete. Observe that if A is centrally symmetric then Al is symmetric, too.

For the general case of a CNN with nonlinear and delay-type templates, and using the same variables
and vectors as above, the canonical matrix-vector description of the dynamics is as follows (aqain assuming a
square grid withr=1,R =1, C=1).

N A
Yo = Uy, ACg)e + Bly)e + ATy (t-T) + By (T + 1 (8)
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e=[1,1,1, ........ , 11T ¢ RN
-
A, B NZxN? i ith el A

s are N°xN°“ matrices with elements ij;kl(vykl’vyij)’
~
Biyik1(Vuk1oVuij)
AT, BT are N’°xN° matrices with elements Atij~k1'
T
B ikl
The ordering of the cell variables into the vectors v,, vy and v, is choosen in the same way as above for

the linear templates.

For examplg, if we have a nonlinear cloning template

0 PN 0
A
A= py zvyii PE ; B=20; I=0; 9

then the first 2 rows of the matrix A in Eq.(8) is as follows:

1 2 3 4 5 6
2Vyii pE(vyz,vyl) ps(vy3,vy1) 0 0 0
A= pw(vyl'vyZ) 2vy2 0 0 pS(VyS'VyZ) pE(vyG'VyZ)

“Writing equation (8) in scalar form with t = 0, A* = B® = 0 we have

N A
i = Ve v I+ Ail(vyl’vyi) + ...t AiNL(VyN ’Vyi) +

Wy <

A -
10V Vei) ot B vy V) ist, NP (12)

+
Based on the structure of the above canonical equations, several important stability results can be
sroved using similar techniques asin [1,2, 12]. Here, as a representative result, we will prove only our next

Proposition.

Proposition 2
‘73 CNN has a nonlinear cell-linking template [2] which has template atoms with strictly monotone increasing
" characteristics in the non-local variable (ie. for p(vykl’vy i J-) (}p/()vykl > 0 ) then the CNN is
s:mmpletely stable except possibly from a set of initial conditions of measure zero. A circuit is said to be
z:mpletely stable iff every trajectory tends to an equilibrium state. Consequently, such a circuit can not
:s<late or become chaotic (it is called convergent in [12]).

Proof. In view of the cell-linking property the dynamics described by (12) is irreducible. Moreover, the
s.pothesis of Proposition 2 guarantees that all the off-diagonal terms of associated Jacobian matrixare
zes:tive. Therefore, using [5,18] the dynamics is completely stable (convergent) except for a starting set with

ToIasure zero.



VI. CONLUSIONS

The cellular neural network with nonlinear and delay-type cloning templates form a unifying paradigm
for analog (nonlinear) processing arrays. It provides not only a rigorous theoretical framework but, at the
same time, many practical solutions to various image processing problems can be solved by these arrays in
real-time. In particular, the first two phases of many image processing problems (e.g. noise removal and
feature extraction of gray-scale pictures) belong to these classes of problems. In addition to many new
applications, the nonlinear cloning templates allows us to model some biological properties of the retina but
they can also be used for modeling motion dynamics. The delay-type templates provides us with even more
flexibilities and new applications, including the detection of some motion features.
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Figure 1. Typical regular grids : (a) rectangular (4 or 8 neighbors), (b) triangular (6 ncighbors), (c)
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Figurc 2. The analog processor cell circuit.
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Figure 3. The nonlincar output function.

Figure 4. A resistive grid-type circuit structure. All resistors are nonlincar and characterized by
i=G(v).

Figure 5. The v-i characteristic of a *fading” resistor.
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Figure 6. An input picture.

(a) (b)

Figure 7. The output pictures using (a) a linear cloning template and (b) a delay-type cloning template.

(a) (b)
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Figure 8. The distinct ordering schemes.



